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Introduction 
Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US men,1 is a 
leading cause of cancer-related death and is, appropriately, the subject of heightened public 
awareness and widespread screening. If prostate-specific antigen (PSA)2 or digital rectal screens 
are abnormal,3 a biopsy is considered to detect or rule out cancer. Pathologic status of biopsied 
tissue forms the definitive diagnosis for prostate cancer and constitutes an important cornerstone 
of therapy and prognosis.4 There is, hence, a need to add useful information to diagnoses and to 
introduce new technologies that allow efficient analyses of cancer to focus limited healthcare 
resources. For the reasons underlined above, there is an urgent need for high-throughput, 
automated and objective pathology tools. Our general hypothesis is that these requirements are 
satisfied through innovative spectroscopic imaging approaches that are compatible with, and add 
substantially to, current pathology practice. Hence, the overall aim of this project is to 
demonstrate the utility of novel Fourier transform infrared (FTIR) spectroscopy-based, 
computer-aided diagnoses for prostate cancer and develop the required microscopy and software 
tools to enable its application.  
 
FTIR spectroscopic imaging is a new technique that combines the spatial specificity of optical 
microscopy and the biochemical content of spectroscopy.5 As opposed to thermal infrared 
imaging, FTIR imaging measures the absorption properties of tissue through a spectrum 
consisting of (typically) 1024 to 2048 wavelength elements per pixel.6 Since mid-IR (2-12 �m 
wavelength) spectra reflect the molecular composition of the tissue, image contrast arises from 
differences in endogenous chemical species. As opposed to visible microscopy of stained tissue 
that requires a human eye to detect changes, numerical computation is required to extract 
information from IR spectra of unstained tissue. Extracted information, based on a computer 
algorithm, is inherently objective and automated. Recent work has demonstrated that these 
determinations are also accurate and reproducible in large patient populations.7 Hence, we 
focused, in the first year of this project, on demonstrating that the laboratory results could be 
optimized using novel approaches to fast imaging. This is a critical step, since we propose next 
to analyze 375 radical prostatectomy samples. We have been able to optimize data acquisition 
parameters and develop a novel algorithm for processing data that enables almost 50-fold faster 
imaging. Briefly, the idea behind the process is illustrated in Fig 1. In this performance period, 
we sought to use acquired data to establish the use of IR imaging for validating cancer diagnosis 
(task 2), develop a calibration and prediction model for grading and perform extensive validation 
(task 2). Finally, we sought to develop a mathematical framework to relate disparate pieces of 
information to outcome (task 3).  
 



 
Figure 1.  (A) Conventional imaging in pathology requires dyes and a human to recognize 
cells. In chemical imaging data cubes (B), both a spectrum at any pixel (C) and the spatial 
distribution of any spectral feature can be seen. e.g. in (D) nucleic acids (left, at ~1080 cm-

1), and collagen specific (right, at ~ 1245 cm-1 )  Computational tools can then convert 
chemical imaging data to knowledge used in pathology (E). 

Body 
Specific activities and tasks as per statement of work during this performance period are 
described below. Details of performance for the past years periods are given in the past annual 
reports which is attached for quick reference of the reviewers. :

Task 1. Perform infrared spectroscopic imaging on prostate biopsy specimens 
Goal: Data will be acquired from samples identified in Task 2, sub-task a. 4 cm^(-1) spectral 
resolution data, imaging ~6 micrometer of sample per pixel will be acquired with a signal to 
noise ratio of greater than 1000:1. At least 375 samples will be imaged to provide as estimated 
40 million spectra. Data will continuously be available for analysis in this period. (Months 8-18) 

Activities: Activities: A focal plane array (FPA) detector was interfaced to an infrared 
interferometer and microscope to record high-throughput spectroscopic imaging data. A rapid-
scanning FTIR imaging system that can image more than 16,000 spectra per second was 
available. The system, however, provided low signal to noise ratio (SNR) data. In increasing the 
SNR of data acquired, there are typically hardware or experimental approaches. It is 
prohibitively expensive to procure new hardware. Hence, typically, the approach has been to 
increase SNR by averaging successively acquired images. The benefits in SNR are , where n 
is the numbers of averaged spectral data cubes. Hence, we focused next on developing post-
processing methods, as detailed next. 

Goal: Develop a route to mathematically transform data to eliminate noise and yield high quality 
data. A custom algorithm will be developed in which the covariance matrix is employed to first 
perform a factor analysis equivalent operation followed by image separation from noise and re-
transformation. Software to automatically correct data will be available. (Months 2-6) 
Activities: The methodology was developed and is demonstrated to show a 50-fold improvement 
in SNR. Results are reported in publication to Analyst and were presented at 2 conferences. 
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Our approach was the following: The first and simplest approach to higher fidelity imaging 
required co-adding a large number of array detector snapshots of the same scene, resulted in long 
dwell times of the mirror at every optical retardation8. We operated the interferometer in step-
scan mode and wrote custom software to analyze the data. The advantages of this frame co-
addition process were limited due to the noise characteristics of the detector. Hence, an optimal 
combination of frame co-addition and repeated scanning was implemented, as previously 
proposed9. Though these methods make the best use of the available hardware, they 
unfortunately, require large increases in data acquisition time as the SNR reduction scales less 
than linearly with the acquisition time. In order to obtain high SNR data using acquisition-side 
approaches, the trade-off with respect to time is unavoidable. Such a trade-off limits the possible 
applications of FT-IR imaging as a routine microscopic analysis tool in prostate cancer.  
 
For a finite data acquisition time, other schemes to extract low noise information are available10 
but these methods neglect the image as a whole and result in loss of image fidelity. While we 
implemented these schemes here, it was clear that structural fidelity of the tissue image was 
being affected. Hence, we turned our attention to another alternative to hardware improvement or 
co-addition schemes for high fidelity imaging. This approach is the use of mathematical noise 
reduction techniques. For example, a procedure based on the Minimum Noise Fraction (MNF) 
transform was adopted from the satellite and airborne imaging community11. With rapid 
development of powerful computers and increased storage capacities, using computation to 
enhance instrument performance is becoming an attractive option. Using chemometric methods 
to enhance acquired FT-IR imaging data has been a relatively recent development. A convenient 
approach is to use an Eigenvalue decomposition of the data using a forward transform, e.g. PCA. 
After selecting eigenimages with sufficient SNR, the selected data are inverse transformed to 
yield the entire dataset with lower noise content. This approach was used12 to examine phase 
compositions by enhancing contrast between different regions. PCA reorders data in decreasing 
order of variance.  
 
A similar technique called MNF transform was proposed13 to re-order image data in decreasing 
order of SNR. A modified version14 of this transform has been shown to improve image fidelity 
and achieve better noise reduction than PCA, for example.  
 
Mathematical transform techniques for noise reduction generally utilize the fact that noise in 
uncorrelated whereas spectra (signals) have a fairly high degree of correlation. In the transform 
domain, the signal is primarily restricted to a few factors where as the noise is spread across all 
factors. We use the term 'factors' to refer to images of eigenvalues in the transform domain.  
Noise reduction can be achieved by retaining factors corresponding to high signal content, 
removing factors predominantly corresponding to noise and computing the inverse transform. 
Identifying factors corresponding to high signal content is an important step in the noise 
reduction process. 
 
The identification of factors to include is invariably a manual process and is the key impediment 
to routine application of these methods for noise reduction. First, the manual selection will vary 
from practitioner to practitioner, leading to variance in the results obtained from the same data 
set. The scientific conclusions or confidence in results, hence, may vary in an unpredictable 
manner. Second, the need to examine every eigenvalue image (or, at least, a large set of images) 



is time-consuming. The decision to exclude or include images with questionable content is 
especially difficult and requires significant time as some quantitative guidance is often used. For 
example, we have used comparisons of values from sample and sample-less regions. These two 
factors are a key barrier in the use of these post-processing techniques for enhancing IR imaging 
data.  
 
There are many dimension reduction and noise reduction schemes proposed15,16. Many of these 
methods15,17,18 choose all factors before a certain cut off (k) determined based on predefined 
criteria. However, the assumption that all of the first k factors are important is questionable. The 
MNF approach was specifically developed to overcome the observation that the first k factors in 
PCA were not always optimal. Other methods16,19 can be computationally expensive or do not 
utilize some of the features of the data in factors.  
 
A general criticism of these methods is that they do not explicitly account for the spatial and 
spectral information in the data. For example, PCA separates features in the spatial domain by 
accounting for variance in the scene. The variance may arise from the data, sensor or may be an 
artifact. Similarly, the signal in the re-ordering of MNF factors is assumed to be features in the 
image but could come from factors other than the sample of interest. For example, Figure 1 
shows the 4th, 8th, 12th and 19th MNF factor for FT-IR data from a breast tissue sample. The 4th 
MNF factor shows interesting tissue structural features. Although the  8th  factor has higher SNR 
compared to the  12th  or  19th  factor, the  12th  and  19th  factors contain relatively more features 
of interest. We would include the 12th and 19th factors but not the 8th in a noise reduction scheme 
involving MNF transform. The 8th factor likely arises from illumination or water vapor 
differences and not from the sample itself.  
 

 
Figure 2. (A) 4th MNF Factor (Tissue structural features visible) (B) 8th MNF factor (C) 12th 
MNF factor (D) 19th MNF factor. The 8th factor has less structural features compared to 
12th or 19th factor. 

 
Hence, we proposed a factor selection algorithm that selects factors based on structural features 
in a quantitative manner. Although we illustrate the utility of the proposed algorithm for tissue 
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FT-IR data, the technique is more general and can be applied to any other data in which 
structures in images are well described by edges. We could also use the proposed factor selection 
algorithm with other transform techniques like PCA for example. A generalization of the MNF 
transform has been proposed by20. However, we did not observe the kind of distortion described 
in 20 in our data and therefore did not find the need to use the generalized MNF. We 
demonstrate the efficacy of this automated SNR enhancement by applying the process to breast 
tissue data. The effects of SNR are quantitatively measured by the accuracy of classifying tissue. 
 
Over 5 million spectra have been acquired from approx. 475 samples using 4 cm-1 resolution 
over the 7200-720 cm-1 range and 6.25 micron on a side per pixel.  Data handling and analysis is 
on-going. The data were acquired using a tissue microarray with no restrictions on age or prior 
PSA reading. The archiving and record keeping for such data sets became a challenge. Hence, 
we developed data handling tools to both maintain a database of properties as well as visualize 
the data in a microarray format. For example, one acquired data set is shown below in Figure 3. 
 
 

 
 
Figure 3. Approximately 475 viable samples for further analysis acquired by FT-IR 
imaging and classified as per optimized protocols developed previously in this project. 

A second set of 460 samples were also acquired for validation studies. This large scale data 
acquisition has never been previously reported and is a direct result of the optimizations 
accomplished in year 1 of this project. Corresponding to each sample in the tissue array above, 
we have developed a database to store information for the patient, including age, PSA values at 
the time of diagnosis, Gleason grade and stage on diagnosis as well as outcome.  
 
As per previous studies in year 1, we determined that there was a need to acquire data of a signal 
to noise ratio (SNR) of at least 1000:1 (or, 30 dB).  One outstanding question is how to predict 
the required SNR for any classification task. This is a major issue in which no useful guidance 
was available in the literature. In observing the data from many samples, it became clear that 
new tools were needed to visualize diversity and usefulness of particular samples. In particular, 
one key element of the protocol depends on a quality check. If contaminations exist in samples 
or the sample does not belong to a population that is similar to the one that was used to construct 



a calibration of the data, then the sample will clearly lead to incorrect results. Such a sample 
must be flagged during quality control but there was no obvious means to do so. Hence, we 
developed a new visualization system for spectrum wide analysis of the data. 
 
First, we recall that not every point in the spectrum is actually useful in calibration or prediction. 
The data are reduced to a potential set of descriptors, termed metrics, which are peak height 
ratios, areas, positions or even spatial indices. Only a few of these metrics are useful in 
calibration, and consequently, in predicting histopathology. Hence, we employ the visualization 
only for a set of metrics. A view of the developed software and typical plot resulting from the 
analysis is shown in Figure 4.  

 

Figure 4. A Representation of metric-patient data to determine quality and consistency in 
large scale data analysis. Many representations are possible, including the one shown here. 
Here, the value of (µ1-µ2)/σ for each metric is represented, where µ1 is the mean of 
epithelium pixels for one patient for a particular metric and µ2 is the mean of stroma pixels 
for one patient for a particular metric whereas σ is the standard deviation of the entire 
metric. Hence, (µ1-µ2)/σ  is a measure of classification potential in separating epithelium 
from stroma. Patient no. 34 can be seen to have outlier values that must be investigated in 
detail so as not to become a confounding variable. 

 
Task 2. Analyze spectroscopic imaging data for biochemical markers of tumor and develop 
numerical algorithms for grading cancer 
Goal: Develop algorithm for malignancy recognition. Models will be constructed and optimized 
using Genetic Algorithms operating on identified metrics. Models will be tested and validated 
using ROC curves with pathologist marking as the ground truth. A protocol for segmenting 
benign from atypical condition will be available.  (Months 11-18) Three specific aims from the 
statement of work (SOW) are: 

a. Identify samples to be imaged (Months 1-3) by examining stained slides 
b. Obtain unstained samples to be imaged and define regions for calibration and 

validation (Months 4-7) 
c. Perform histologic identification on prostate samples and validate 
d. Reduce spectral metrics to those useful in identifying atypia (Months 8-12) 
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e. Develop protocols and validate distinction between benign-appearing and atypical 
tissue (Months 12-18) 

f. Develop calibration for predicting cancer grade (Months 18-22) 
g. Develop protocols and validate Gleason grading of tumor (Months 18-27) 

 
 
Activities:  
 
 
Goal: Data acquisition and treatment protocol will be optimized and feedback loop implemented. 
Image sets will be acquired at low averaging and extensive averaging conditions to verify 
performance and optimize algorithm. A validated protocol for collecting data will be available.  
(Months 5-7) 
Activities: Data were acquired and experimental conditions were optimized to help determine 
the operating points for prostate histology. Briefly, the spectral resolution was not found to be 
important unless coarse resolution was obtained. SNR was found to be crucial and a plot of the 
SNR versus the classification accuracy yielded the optimal operating point. Results are 
summarized in a peer-reviewed manuscript21 and the methodology is described in a review 
paper. Results were presented at three different meetings. 
 
A single button operation is implemented in our software that now pre-processes data and adjusts 
for appropriate SNR. A second step can then classify the resulting data into histologically correct 
classes. 
 
Goal: Data will be acquired from samples identified in Task 2, sub-task a. 4 cm^(-1) spectral 
resolution data, imaging ~6 micrometer of sample per pixel will be acquired with a signal to 
noise ratio of greater than 1000:1. At least 375 samples will be imaged to provide as estimated 
40 million spectra. Data will continuously be available for analysis in this period. (Months 8-18) 
Activities: Over 4 million spectra have been acquired from approx. 460 samples. Data handling 
and analysis is on-going. The data were acquired using a tissue microarray with no restrictions 
on age or prior PSA reading. 
 
 
TASK 2E: DEVELOP PROTOCOLS AND VALIDATE DISTINCTION BETWEEN 
BENIGN-APPEARING AND ATYPICAL TISSUE  
We were able to accomplish task 2e entirely and a manuscript has been submitted (under 
review). An invention disclosure was filed with the office and technology management, who 
then decided to file a preliminary paten on the work.  
 
We develop a new fully-automated method to classify cancer versus non-cancer prostate tissue 
samples. The classification algorithm uses morphological features – geometric properties of 
epithelial cells/nuclei and lumens – that are quantified based on H&E stained images as well as 
FT-IR images of the samples. By restricting the features used to geometric measures, we sought 
to mimic the pattern recognition process employed by human experts, and achieve a robust 
classification procedure that can produce consistently high accuracy across independent data 
sets. We systematically evaluate the performance of the new method through cross-validation, 



and examine its robustness across data sets. We also summarize the specific morphological 
features that prove to be most informative in classification. 
 

 
Figure 5. IR imaging data and its use in histologic classification. (Upper row) IR imaging 
data (b) is acquired for an unstained tissue section (a). The data is then classified into cell 
types and a classified image (c) is obtained. The colors indicate cell types in a histologic 
model of prostate tissue. This method is robust and applied to hundreds of tissue samples 
using the tissue microarray (TMA) format. (Lower row) H&E (d) and IR classified (e) 
images of a part of the TMAs used. 

 
Methods: Several new methods were developed to accomplish the task. 

We begin with a description of the computational pipeline. As noted above, a key aspect of our 
approach is the use of FT-IR imaging data on a serial section that is H&E-stained to enhance the 
segmentation of nuclei and lumens. The first two components of the pipeline (§1-2) are geared to 
this functionality, while the next three components (§3-5) exploit the segmented features 
obtained from image data to classify the tissue sample (Figure 3). 



 
 
Figure 6. Overview of  the approach. (a, b) FTIR spectroscopic imaging data-based cell-
type classification (IR classified image), is overlaid with H&E stained image (a), leading to 
segmentation of nuclei and lumens in a tissue sample (b). (c,d,e) Features are extracted and 
selected (c), and used by the classifier (d) to predict (e) whether the sample is cancerous or 
benign. 

 
1. Image Registration 
Given two images, the image registration problem can be defined as finding the optimal spatial 
and intensity transformation of one image to the other. Here, two images are H&E stained and 
“IR classified” images which were acquired from adjacent tissue samples. The IR classified 
image represents the FT-IR imaging data, processed as indicated in Figure 2, to classify each 
pixel as a particular cell type. Although the two samples were physically in the same intact tissue 
and are structurally similar, the two images have different properties (total image and pixel sizes, 
contrast mechanisms and data values). Hence, features to spatially register the images are not 
trivial. The H&E image provides detailed morphological information that could ordinarily be 
used for registration, but the IR image lacks such information. On the other hand, the IR image 
specifies the exact areas corresponding to each cell type, but the difficulty in precisely extracting 
such regions from the H&E image hinders us from using cell-type information for registration. 
The only obvious features are macroscopic sample shape and empty space (lumens) inside the 
samples. To utilize these two features and to avoid problems due to differences in the two 



imaging techniques, both images are first converted into binary images. Due to the binarization, 
the intensity transformation is not necessary. As a spatial transformation, we use an affine 
transformation ( f ) where a coordinate (x1, y1) is transformed to the (x2, y2) coordinate after 
translations (tx, ty), rotation by θ, and scaling by factor s.  
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Accordingly, we find the optimal parameters of the affine transformation that minimizes the 
absolute intensity difference between two images (Ireference and Itarget). In other words, image 
registration amounts to finding the optimal parameter values 
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solve the above equation. An example of this registration process is shown in Figure 4. 
 

 
Figure 4. Image Registration. H&E stained images and IR classified images are first 
converted into binary images. The IR classified image is overlaid with the H&E stained 
image by affine transformation, with the optimal matching being found by minimizing the 
absolute intensity difference between two images. After registration, original annotations 
(color and/or cell-type information) of each image are restored 
 
2. Identification of epithelial cells and their morphologic features 
While a number of factors are known to be transformed in cancerous tissues, epithelial 
morphology is utilized as the clinical gold standard. Hence, we focus here on cellular and nuclear 
morphology of epithelial nuclei and lumens. These structures are different in normal and 
cancerous tissues, but are not widely used in automated analysis due to a few reasons. First, as 
described above, simple detection of epithelium from H&E images is difficult. Second, detection 
of epithelial nuclei may be confounded by a stromal response that is not uniform for all grades 
and types of cancers. We focused first on addressing these two challenges that hinder  



automatically parsing morphologic features such as the size and number of epithelial nuclei and 
lumens, distance from nuclei to lumens, geometry of the nuclei and lumens, and others (§3). In 
order to use these properties, the first step is to detect nuclei and lumens correctly and we sought 
to develop a robust strategy for the same. 
 
2.1. Lumen Detection  
In H&E stained images, lumens are recognized to be empty white spaces surrounded by 
epithelial cells. In normal tissues, lumens are larger in diameter and can have a variety of shapes. 
In cancerous tissues, lumens are progressively smaller with increasing grade and generally have 
less distorted elliptical or circular shapes. Our strategy to detect lumens was to find empty areas 
that are located next to the areas rich in epithelium. White spots inside the sample can be found 
from the H&E image, and the pixels corresponding to epithelial cells can be mapped on the H&E 
image from the IR classified image through image registration. We note that while lumens are 
ideally completely surrounded by epithelial cells (called complete lumens), some samples have 
lumens (called incomplete lumens) that violate this criterion because only a part of lumen is 
present in the sample. To identify these incomplete lumens, we use heuristic criteria based on the 
size, shape, presence of epithelial cells and background around the areas, and distance from the 
center of the tissue. (See Supplementary Materials for details.) 
 
2.2. Nucleus Detection – single epithelial cells 
Epithelial nucleus detection by automated analysis is more difficult than lumen detection due to 
variability in staining and experimental conditions under which the entire set of H&E images 
were acquired. Differences between normal and cancerous tissues, and among different grades of 
cancerous tissues, also hamper facile detection. To handle such variations and make the contrast 
of the images consistent, we perform smoothing and adaptive histogram equalization prior to 
nuclei identification. Nuclei are relatively dark and can be modeled as small elliptical areas in the 
stained images. This geometrical model is often confounded as multiple nuclei can be so close as 
to appear like one large, arbitrary-shaped nucleus. Also, small folds or edge staining around 
lumens can make the darker shaded regions difficult to analyze. Here, we exploit the information 
provided by the IR classified image to limit ourselves to epithelial cells, and use a thresholding 
heuristic on a color space-transformed image to identify nuclei with high accuracy. Epithelial 
pixels that are identified on the H&E images using the IR overlay provide pixels of dominated by 
one of two colors: blue or pink, which arise from the nuclear and cytoplasmic component 
respectively. For nuclei restricted to epithelial cells in this manner, a set of general observations 
were made that led us to convert the stained image to a new color space “RG–B” (|R + G – B|). 
(R, G, and B represent the intensity of Red, Green, and Blue channels, respectively.) This 
transformation, followed by suitable thresholding, was able to successfully characterize the areas 
where nuclei are present. The threshold values are adaptively determined for Red and Green 
channels due to the variations in the color intensity. (See Supplementary Materials for details.) 
Finally, filling holes and gaps within nuclei by a morphological closing operation, the 
segmentation of each nucleus is accomplished by using a watershed algorithm followed by 
elimination of false detections. The size, shape, and average intensity are considered to identify 
and remove artifactual nuclei. Figure 5 details the nucleus detection procedure. 
 



 
 
Figure 7. Nucleus Detection. Smoothing and adaptive histogram equalization are 
performed to alleviate variability in H&E stained image and to obtain better contrast. “RG 
– B” conversion followed by thresholding characterizes the areas where nuclei exist. 
Morphological closing operation is performed to fill holes and gaps within nuclei, and a 
watershed algorithm segments each individual nuclei. The segmented nuclei are 
constrained by their shape, size, and average intensity and epithelial cell classification 
(green pixels) provided by the overlaid IR image. 

 
3. Feature Extraction 
As mentioned above, the characteristics of nuclei and lumens change in cancerous tissues. In a 
normal tissue, epithelial cells are located mostly in thin layers around lumens. In cancerous 
tissue, these cells generally grow to fill lumens, resulting in a decrease in the size of lumens, with 
the shape of lumens becoming more elliptical or circular. The epithelial association with a lumen 
becomes inconsistent and epithelial foci may adjoin lumens or may also exist without an 
apparent lumen. Epithelial cells invading the extra-cellular matrix also result in a deviation from 
the well-formed lumen structure; this is well-recognized as a hallmark of cancer. Due to filling 
lumen space and invasion into the extra-cellular space, the number density of epithelial cells 
increases in tissue. The size of individual epithelial cells and their nuclei also tend to increase as 
malignancy of a tumor increases. Motivated by such recognized morphological differences 
between normal and cancerous tissues, we chose to use epithelial nuclei and lumens as the basis 
of the several quantitative features that our classification system works with. (See examples of 
such features in Figure 6.) It is notable that these observations are qualitative in actual clinical 
practice and have not been previously quantified. 
 



 
Figure 8. Examples Features. Each panel shows one example feature, along with the 
distributions of the feature’s values for cancer (red) and benign (blue) classes. 

 
3.1. Epithelial cell-related features  
We use epithelial cell type classification from IR data to measure epithelium-related features. 
However, individual epithelial cells in the tissue are not easily delineated. Therefore, in addition 
to features directly describing epithelial cells, we also quantify properties of epithelial nuclei, 
which are available from the segmentation described in §2. The quantities we measure in 
defining features are: (1) size of epithelial cells, (2) size of epithelial nuclei, (3) number of nuclei 
in the sample, (4) distance from a nucleus to the closest lumen, (5) distance from a nucleus to the 
epithelial cell boundary, (6) number of “isolated” nuclei (nuclei that have no neighboring nucleus 
within a certain distance), (7) number of nuclei located “far” from lumens, and  (8) entropy of 



spatial distribution of nuclei (Figure 6G). Supplementary Materials provide specifics of these 
measures and their calculation. 
 
3.2. Lumen-related features 
Features describing glands have been shown to be effective in PCa classification. Here, we try to 
characterize lumens and mostly focus on the differences in the shape of the lumens. The 
quantities we measure in defining these features are: (1) size of a lumen, (2) number of lumens, 

(3) lumen “roundness”, defined as 
2
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 where periL  is the perimeter of the lumen, areaL  is the 

size of the lumen, and r is the radius of a circle of  size areaL , (4) lumen “distortion” (Figure 6A), 
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 where 
cbLd  is the distance from the center of a lumen to the boundary of 

the lumen and AVG(·) and STD(·) represent the average and standard deviation, (5) lumen 
“minimum bounding circle ratio” (Figure 6B), defined as the ratio of the size of a minimum 
bounding circle of a lumen to the size of the lumen, (6) lumen “convex hull ratio” (Figure 6C), 
which is the ratio of the size of a convex hull of a lumen to the size of the lumen, (7) symmetric 
index of lumen boundary (Figure 6E, see Supplementary Materials), (8) symmetric index of 
lumen area (Figure 6F, see Supplementary Materials), and (9) spatial association of lumens and 
cytoplasm-rich regions (Figure 6D, see Supplementary Materials). Features (3) – (8) are various 
ways to summarize lumen shapes, while feature (9) is motivated by the loss of functional 
polarization of epithelial cells in cancerous tissues. 
 
3.3. Global & local tissue features 
We have described above the individual measures of epithelium and lumen related quantities that 
form the basis of the features used by our classification system. Normally, these features have to 
be summary measures over the entire tissue sample or desired classification area. Hence, we 
employ average (AVG) or standard deviation (STD), and in some cases the sum total (TOT) of 
these quantities for further analysis. These features are called “global” features since they are 
calculated from the entire sample. However, in some cases global features may be misleading, 
especially where only a part of the tissue sample is indicative of cancer. Therefore, in addition to 
global features, we define “local” features by sliding a rectangular window of a fixed size 
(typically 100x100 pixels) throughout a tissue sample, computing the average or sum total of the 
feature in each window, and computing the standard deviation and/or extrema over the values for 
all windows (Figure 7). In all, 67 features (29 global and 38 local features) are defined capturing 
various aspects of tissue morphology.  
 
4. Feature Selection 
Feature selection is the step where the classifier examines all available features (67 in our case) 
with respect to the training samples, and selects a subset to use on test data. This selection is 
generally based on the criterion of high accuracy on training data, but also strives to ensure 
generalizability beyond the training data. We adopt a two-stage feature selection approach here. 
In the first stage, we generate a set of candidate features (Ccandidate) by using the so-called 
minimum-redundancy-maximal-relevance (mRMR) criterion. In each iteration, given a feature 
set chosen thus far, mRMR chooses the single additional feature that is least redundant with the 
chosen features, while being highly correlated with the class label. Ccandidate is a set of features 



that is expected to be close to the optimal feature set for a dataset and a classifier under 
consideration. It is constructed as follows. Given a feature set F = (f1, …, fM) ordered by mRMR, 
AUC of the set of i top-ranked features is computed for varying values of i. We limit the value of 
i to be � 30. The feature subset with the best AUC is chosen as the Ccandidate. In the second stage, 
feature selection continues with Ccandidate as the starting point, using the sequential floating 
forward selection (SFFS) method. This method sequentially adds new features followed by 
conditional deletion(s) of already selected features. Starting with the Ccandidate, SFFS searches for 
a feature x � Ccandidate that maximizes the AUC among all feature sets Ccandidate � {x}, and adds it 
to Ccandidate. Then, it finds a feature x � Ccandidate that maximizes the AUC among all feature sets 
Ccandidate – {x}. If the removal of x improves the highest AUC obtained by Ccandidate, x is deleted 
from Ccandidate. As long as this removal improves upon the highest AUC obtained so far, the 
removal step is repeated. SFFS repeats the addition and removal steps until AUC reaches 1.0 or 
the number of additions and deletions exceeds 20, and the feature set with the highest AUC thus 
far is chosen as the optimal feature set. The classification capability of a feature set, required for 
feature selection, is measured by the area under the ROC curve (AUC), obtained by cross-
validation on the training set. 
 
5. Classification 
We note that there are two levels of classification here. In the first, IR spectral data is used to 
provide histologic images where each pixel has been classified as a cell type. In the second, the 
measures from H&E images and IR images are used to classify tissue into disease states. In this 
manuscript, we do not discuss the first classification task as its development and results are well-
documented. For the latter task, we used a well established classification algorithm, namely 
support vector machine (SVM). Two cost factors are introduced to deal with an imbalance in 
training data. The ratio between two cost functions was chosen as  

number of negative training examples
number of positive training examples

C
C
�

�

�  

to make the potential total cost of the false positives and the false negatives the same. (See 
Supplementary Materials for details.) 
 
6. Data preparation 
All of the H&E stained images were acquired on a standard optical microscope at 40x 
magnification. The size of each pixel is 0.9636 um x 0.9636 um. On the other hand, the pixel 
size of IR images is 6.25um x 6.25um. The acquisition was previously described in previous 
years’ reports. Two data sets, stained under different conditions, were used in this study. The 
first dataset (“Data1”) consists of 66 benign samples and 115 cancer samples, and the second set 
(“Data2”) includes 14 benign and 36 cancer samples. These were previously acquired under the 
grant. 
 
Results and discussion: We then applied the methods to classify prostate tissue and the results 

are presented below. 

1. The classification system achieves AUC greater than 0.97 on both data sets 
We first performed K-fold cross validation on each dataset. The data set was divided into K 
roughly equal-sized partitions, one partition was left out as the “test data”, the classifier was 



trained on the union of the remaining K – 1 partitions (the “training data”) and evaluated on the 
test data. This was repeated K  times, with different choices of the left-out partition. (We set K = 
10.) In each repetition, cross-validation on the training data was used to select the feature set 
with the highest AUC as explained in §4. The correct and incorrect predictions in the test data, 
across all K repetitions, were summarized into a ROC plot and the AUC was computed, along 
with specificities when sensitivity equals 90, 95, or 99%. Since the cross-validation exercise 
makes random choices in partitioning the data set, we examined averages of these performance 
metrics over 10 repeats of the entire cross validation pipeline. The average AUC for Data1 and 
Data2 were 0.982 and 0.974 respectively (Table 1, “feature extraction” = “IR & HE”). At 90%, 
95%, and 99% sensitivities, the average specificity achieved on Data1 was 94.76%, 90.91%, and 
77.80% respectively, while that on Data2 was 92.53%, 84.19%, and 49.54% respectively. 
  
One way to interpret the above values is to examine our automated pipeline as a pre-screening 
mechanism to identify the samples to be examined by a human pathologist. At a “true positive 
rate” of 99% (which means that only 1% of the cancer samples will be missed by the screen), the 
“false positive rate” is 22.2% (i.e., 22.2% of the benign samples will make it through the screen) 
on average for Data1 (Table1), thereby reducing the workload of the pathologist by 4.5-fold. 
While the error rate of manual pathology determinations is generally accepted to be in 1-5% 
range, inclusion of confounding cancer mimickers raises the rate to as high as 7.5%. Also 
noteworthy is the observation that the same algorithm performs consistently well on both data 
sets, that were obtained from different staining conditions. This speaks to the robustness of the 
classification framework, an attribute that we investigated further in the next exercise. 
 
2. Classification system is robust to staining conditions 
Here, we trained a classifier on Data1 and tested its performance on Data2. We observed an 
average AUC of 0.956, with average specificity of 88.57%, 81.92%, and 26.86% at sensitivity 
equaling 90%, 95%, and 99% respectively (Table 2, “feature extraction” = “IR & HE”). These 
values are competitive with the cross-validation results on Data2 (Table 1), where the training 
and testing were both performed on (disjoint parts of) Data2.  
 
3. IR data is critical to classification performance 
To assess the utility of the IR-based cell-type classification, we repeated the above exercises 
after extracting features without the guidance of the IR data; i.e., epithelial cells were predicted 
from the H&E images alone (see Supplementary Materials for details). All of the features 
defined in §3 were used, except for “Spatial association of lumens and apical regions”, since the 
distinction between cytoplasm-rich and nuclear-rich region in epithelial cells was unclear in 
H&E images. The results from this disadvantaged classifier are shown in Tables 1 and 2 
(“feature extraction” = “HE only”). For both types of experiments, we obtained lower average 
AUCs and specificity values. For instance, the AUC of cross-validation in Data2 (Table 1) 
dropped from 0.974 to 0.880. Similarly, the results of validation between datasets (Table 2) were 
substantially worse now compared to the IR-guided classification, with the AUC dropping from 
0.956 to 0.918. This indicates that feature extraction with the help of the IR cell-type 
classification is critical to consistent and reliable classification of cancer versus benign tissue 
samples.  

Dataset Feature 
Extraction 

AUC Sensitivity 
(%) 

Specificity (%) Mf AVG STD AVG STD 



Data1 

IR & HE 0.982 0.0030 
90 94.76 1.64 

13 95 90.91 1.62 
99 77.80 5.52 

HE only 0.968 0.0052 
90 91.64 2.26 

11 95 83.90 1.91 
99 53.43 13.65 

Data2 

IR & HE 0.974 0.0145 
90 92.53 7.11 

7 95 84.19 10.84 
99 49.54 22.51 

HE only 0.880 0.0175 
90 61.34 10.31 

8 95 22.21 10.06 
99 11.21 6.01 

Table 1 . Classification results via cross-validation.  
AVG and STD denote average and standard deviation across ten repeats of cross-valdiation. Mf 
is the median size of the feature set obtained by feature selection from training data. Column 
“Feature Extraction” indicates if features were obtained using H&E as well as IR data, or with 
H&E data alone. 
 
Feature 
Extraction Dataset AUC Sensitivity 

(%) 
Specificity (%) Mf AVG STD AVG STD 

IR & HE 

Train 0.994 0.0006 
90 98.30 0.68 

13 

95 96.58 1.10 
99 91.55 2.55 

Test 0.956 0.0089 
90 88.57 5.96 
95 81.92 5.28 
99 26.86 15.50 

HE only 

Train 0.986 0.0021 
90 97.77 0.97 

10 

95 91.56 2.49 
99 79.29 4.47 

Test 0.918 0.0100 
90 65.51 8.37 
95 46.14 7.53 
99 13.29 6.94 

Table 2. Validation between datasets. 
A classifier is trained on Data1 and tested on Data2. AVG and STD denote the average and 
standard deviation. Mf is the median size of the optimal feature set. Column “Feature Extraction” 
indicates if features were obtained using H&E as well as IR data, or with H&E data alone. 
Column “Dataset” indicates if the performance metrics are from training data (Data1) or from 
test data (Data2). 
 
Previously, Tabeshi et al. achieved an accuracy of 96.7% via cross validation in cancer/no-
cancer classification. Color, morphometric, and texture features were extracted, and all images 
were acquired under similar conditions. We note that our classification result (Table 1), based 
solely on morphology, is comparable to their result; however the software developed by Tabeshi 
et al. was not available for evaluation in our data sets.  Color and texture features could provide 
additional information; however, their robustness to different data sets is questionable, and their 



interpretation is not as obvious as that of morphological features, which are used in clinical 
practice. Different data sets may have varied properties which may be attributable to staining 
variations, inconsistent image acquisition settings, and image preparation. The performance of 
the same method based on texture features has been seen to greatly change from one data set to 
another. Variations in staining may affect color features. In contrast, morphological features 
were shown to be robust to varying image acquisition settings. Nonetheless, the quality of 
morphological features is subject to segmentation of histologic objects. Thus, any method based 
on morphological features will benefit from the IR cell-type classification. 
 
 

 
Figure 9. Global and Local Feature Extraction. Global features are extracted from the 
entire tissue sample, and local features are extracted by sliding a window of a fixed size 
across the tissue sample and computing summary statistics, such as standard deviation, of 
window-specific scores. In this example, the global feature “number of nuclei” has value 
755, while one example position of the sliding window is shown, with “number of nuclei” = 
29. 

 
4. Examination of discriminative features 
We examined the importance of each feature by its rank in the first phase of feature selection, 
based on its “relevance” to the class label (see Supplementary Materials, mRMR). Since 
different features (e.g., average or standard deviation, global or local features) based on the same 
underlying quantity (e.g., “lumen roundness”) generally have similar relevance, we examined the 
average relevance of features in each of 17 feature categories (Figure 8), for each data set. The 
complete list of the individual features and their relevance and mRMR rank (for Data1) is 
available in Figure 9. For Data1, lumen-related feature categories are most relevant in general, 
while epithelium-related feature categories are most important for Data2. It is surprising that the 
top 3 feature categories in Data1 (Figure 8, blue bars) – size of lumen, lumen roundness, and 



lumen convex hull ratio –  have very low relevance in Data2, although we note that this may be 
in large part due to variations in staining and malignancy of tumors between the two data sets. 
Also, examining the features (or feature categories) with highest relevance alone may be slightly 
misleading, because this examination does not account for redundancy among features.  
 
 

 
Figure 10. Importance of 17 feature categories. The average “maximal relevance” of 
features belonging to each feature category is shown, for both data sets, sorted in 
decreasing order for the first data set. 

 



 
Figure 11. List of features and their maximal relevance and “mRMR rank”. In the second 
column, G and L represent global and local features, respectively. AVG, STD, TOT, and 

Fea1Ure Name T • ~ laxhnnl Relevnnce mRMRrank 
Size of Lumen G A\'G 

Lumen Roundness G AVG 

Size of Lumen• Lsro.Avo 
Size of Lumen G,-ro 
Lwnen Convex Hull Ratio G A\'0 

Lumen Roundness 4.tA.X,AVO 

Lumen Convex Hull Ratio (-1-IA.'C,AVG 
Size of Lumen Lsro.Avo 
Size of Lumen• Lsro.ror 
Size of Lumen• lr.tA.X.AVG 18 

Size of Lumen• 4tA..X,TOT 3 1 

Size of Lumen LMA.X.AVO 36 

Size of Lumen lsro.TOT 46 

Siz~ of Lumen 4.Al<.TOT 49 

Lumen Roundness G~'TD 30 

Lumen ~linimum Bouding Circle Ratio O~~.vo 14 

Size of Lumen GTOT 42 

Number of Lumen Gror 10 

Enlropy of Nuclei Spat ial Distribution 4 tAX.TOT 6 
Entropy of Nuclei Spatial Distribution Gmr 
Lumen Roundness ( ,STD.AVO 0.2 

Lumen ~vlinimum Bouding Circle Ratio 4-tA..X,AVG 39 

Size of Nucl~us Grm 23 

i\umber of Nuclei GTOT 0.187 40 

Distance lo Epilhclial Cell Boundory G,'TD 0.18 13 
Spatial Associ a lion of Lumen and Cytoplasm GroT 0. 17 I I 

Number of Lumen Lsro 0.165 4 

Size of Nucleus Lsro 0.163 19 

Fraction of Distance Nucldi GroT 0.163 22 
SizeofEpithcliol Cells Gror 0.159 32 

Lumen Distortion GAVO 0.146 

Size of Epithelial Cdls LM A.X 0.143 

Distance to Lumen L~liN.AVG 0.143 

Lumen Dis-~ortion ~~~A.."<.AVG 0.131 52 

Number ofl.umcn LMAX 0.121 29 

Entropy of Nuclei Spatial Distribut ion Lsro 0.105 54 

Si.ze ofNuoh::us 4tAX.AVO 0.103 24 

Distance to Epithelial Cell Botmdarv L~UN.AVG 0.098 51 

Lurne11 ~linimum Houding Circle Ratio Lsm.Avo 0.088 17 

Number of Isolated 1\'uclci GTOT 0.087 8 

Lumen .\-Linimum Bouding Circle Ratio Gsro 0.077 37 

Symmetric lndex of Lumen Area ~1"'-"<.AVO 0.073 41 

Symm._";tric Index of Lumen Ar-~n G AVG 0063 20 

1..-umcn Distortion Gsro 0.059 27 

Distance to Epithelial Cell Boundary 4-tA..X,AVO 0.059 35 

Number of Nuclei '"''"'·= 0.057 63 

Distance to Lum~ID Gj\VG 0.053 62 

Nurnb~r of Isolated Nuclei ~lA.'(. TOT 0.05 1 28 

S)'1nmctric Index of Lumen Bounda.ry ( ,SID,AVO 0.051 47 

Lumen Convex Hull Ratio Gsro 0.046 65 

S~-11unetric lndt:x of Lumt:n Area Gsm 0.043 50 

Lumen Dislortion Lsm.AVG 0.043 53 

Symmetric l.ndcx of Lumen Bounda.ry Gsro 0042 33 

Distance to Epithelial Cell Boundary GAVO 0.039 45 

Size of Epilhdial Cells Lsro 0,038 43 

Size of Nucleus 4 v.x:ror 0.037 48 

Lumen Conv\!x Hull Ratio Lsm,AVG O.DJ 56 

Size of Nucleus Gsro 0.021 44 

S)'1nmetric Index of Lumen Area Lsro,Avo 0.0 19 55 

Symmetric (ndex of Luml!n IJounda_ry 4JA.VWG 0.019 58 

Symmetric [ndcx of Lumen BotiJlda.ry G;.vc 0.018 61 

Distance to Lumen ~~IA.."<.AVO 0.()]8 64 

Size of Nucleus GAVO 0.014 59 

Size of Nucleus Lsro.ror 0.008 60 

Number of Nuclei Lsro 0.006 57 

Number of Isolated Nuclei Lsro 0.006 66 

Dislonc~ to Lum~n G STD 0.002 67 



MAX denote the average, standard deviation, total amount, and extremal value of features. 
* In computing local features representing “size of lumen”, two options are available: one 
is to consider only the part of the lumen within the window, and the other is to consider the 
entire lumen into account. Asterisk indicates that the former option was chosen. 

 

 
Figure 12. Optimal features for distinguishing cancer and benign tissue samples. The four 
features shown here are always present in the optimal feature set chosen by the classifier. 

 
Conclusions  

In completing this task, we have presented a means to eliminate epithelium recognition 
deficiencies in classifying H&E images for presence or absence of cancer. The method is entirely 
transparent to a user and does not involve any adjustment or decision-making based on spectral 
data. We were able to achieve very effective fusion of the information from two different 
modalities, namely optical and IR microscopy, that provide very different types of data with 
different characteristics. Several features of the tissue were quantified and employed for 
classification. We found that robust classification could be achieved using a few measures, 
which are detailed to arise from epithelial/lumen organization and provide a reasonable 
explanation for the accuracy of the model. The choice of combining the IR and optical data is 
shown to be necessary for achieving the high accuracy values observed. We anticipate that the 
combined use of the two microscopies – structural and chemical – will lead to an accurate, robust 
and automated method for determining cancer within biopsy specimens. 
 
 
 
TASK 2F: DEVELOP CALIBRATION FOR PREDICTING CANCER GRADE 
(MONTHS 18-22) 



Motivation:  
Quality assurance in clinical pathology plays a critical role in the management of patients with 
prostate cancer as pathology is the gold standard of diagnosis and forms a cornerstone of patient 
therapy. Methods to integrate quality development, quality maintenance, and quality 
improvement to ensure accurate and consistent test results are, hence, critical to cancer 
management in any setting. These factors have a direct bearing on patient outcomes, financial 
aspects of disease management as well as malpractice concerns. One of the major failings in 
prostate pathology today is the rate of missed tumors and variability in grading.  It is well known 
that the grading of prostate tissues suffers from intra- and inter-pathologist variability. In the 
studies of intra- and inter-pathologist reproducibility, the exact intra-pathologist agreement was 
achieved in 43-78% of the instances, and in 36-81% of the instances, the exact inter-pathologist 
agreement was reported. It is also known that the variability of the grading could be reduced 
after pathologists are re-trained. There could be many ways to educate pathologists such as 
meetings, courses, online tutorials, and etc, but these are not time- and cost-effective for routine 
everyday decisions. Therefore, building an automated, fast, and objective method to aid 
pathologists to examine prostate tissues will greatly help to attain reliable and consistent 
diagnoses. This will reduce healthcare costs and the chances of malpractice lawsuits as well as 
improve patient outcomes in therapy. 
 
Innovation in our approach and potential benefits:  
When a pathologist examines tissue, he/she looks at a stained imaged of tissue and mentally 
compares it against a database of previous knowledge or information in books. In essence, the 
pathologist is manually matching structural patterns he/she has seen earlier and mentally 
recalling the diagnosis made such that he/she can make the same diagnosis in the specific test 
case. Here, we report developing a computer information and management and decision-making 
system that relies of one or more measures of the structure of tissue to provide images from a 
database that are similar to the sample under consideration. We emphasize that the system does 
not provide a diagnosis but simply provides the closest matching cases that enable a pathologist 
to make a diagnosis. We also propose here the new idea of constructing a database of pre-
examined prostate tissues and providing similar tissue samples with pathologists from the 
database while they examine an unknown tissue sample. To our knowledge, no such system 
currently exists. Further, we propose that our system may or may not use infrared chemical 
imaging data in comparisons. Comparing with the pre-examined tissues samples, we expect that 
pathologists to make more consistent and accurate decision. As we build a database of prostate 
tissue samples, we represent each tissue sample by its morphology. Given an unknown tissue 
sample, the similarities between the unknown sample and the tissue samples in the database are 
measured based on the morphological properties, and the most similar tissue samples are 
retrieved. The pathologist may indicate that certain matches were better than others, resulting in 
an updating of the database and matching algorithms as needed. The updating may be conducted 
in real-time.  
 
Work accomplished: 
Morphological features have been shown to be able to characterize prostate tissues and can be 
used for the diagnostic purpose. Here, 67 morphological features, which are based on lumens and 
epithelial nuclei, were extracted from each tissue sample. The database stores the morphological 
features for the tissue samples which have already been examined by pathologists. 



 
Once we have an unknown prostate tissue sample (query), first of all, the morphological features 
are extracted from the tissue sample. Secondly, the similarities between the query and the tissue 
samples in the database are computed using Euclidean distance based on the morphological 
features. Lastly, the most similar k tissue samples to the query are retrieved from the database.  
 
To assess the goodness of the method, we have tested our method on a dataset composed of 181 
tissue samples. In the dataset, 5, 23, 66, and 21 tissue samples are Gleason grade 2, 3, 4, and 5 
cancer (“Cancer”), respectively, and 20 and 46 tissue samples are BPH and normal (“Benign”), 
respectively. Due to the small number of tissue samples, Gleason grade 2 is ignored for the 
further consideration. As mentioned above, each of tissue samples is represented by 67 
morphological features.  
 
In order to measure the performance of the method, we adopted k-nearest neighbor (kNN) 
algorithm and predicted the grade of the query by majority voting. Both accuracy and kappa-
coefficient were computed for the predictions. Since pathologists may be more interested in 
grading of cancerous tissue samples, we also applied our method only to the “Cancer” tissue 
samples; i.e., Gleason grade 3, 4, and 5 samples. 
 
We performed Leave-one-out (LOO) cross-validation on the dataset. LOO leaves one example as 
a validation data and uses the remaining examples as training data. In our method, the validation 
data is the query, and the training data is regarded as the database. It should be noted that the 
number of tissue samples in each grade in the dataset varies. The imbalance in the dataset could 
affect the prediction made by kNN algorithm. To tackle the problem, we randomly selected the 
same number of tissue samples from each grade and performed LOO on the sub-dataset. This 
repeated 100 times, and the average accuracy and kappa-coefficient were computed over the 
repeats.  
 
Our method is subject to the choice of the number of nearest neighbors to consider for the 
prediction and the number of features to use for the similarity computation. To examine the 
effect of them, we computed the average accuracy and kappa-coefficient over 100 repeats as 
increasing the two factors (Fig. 1). The accuracy decreases as increasing the number of nearest 
neighbors, and the more features we use, the higher accuracy achieved. The highest average 
accuracy achieved for grading both “Cancer” and “Benign” samples (i.e, 5 grades) was 42% 
using 7 features and 1 nearest neighbor (Fig. 1a). By using 8 features and 1 nearest neighbor, the 
highest accuracy of 52% achieved for grading only “Cancer” samples (i.e., 3 grades) (Fig. 1c). 
Both cases also achieved the average Kappa coefficient of 0.27 (Fig. 1b, d). In Fig. 2, the 
distribution of the grade of the retrieved samples is shown. Distinction between “Cancer” and 
“Benign” samples is obvious (Fig 2a), but among “Cancer”, the retrieved samples often do not 
belong to the same grade with the query, especially between Gleason grade 3 and 4.  
 



 
Figure 13. Average accuracy and kappa coefficient. (a), (b) grading for both “Cancer” and 
“Benign” samples. (c), (d) grading for “Cancer” samples. Each line depicts the accuracy 
and kappa coefficient values of the corresponding number of features.  

  



 
Figure 14. Distribution of the grade of the retrieved samples. (a) grading for both “Cancer” 
and “Benign” samples. (b) grading for “Cancer” samples. For the samples in each grade, 
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the grade of retrieved samples are counted and the average number of samples are shown. 
The arrows denote ±1 standard deviation of the number of samples.  

 
Task: Develop protocols and validate Gleason grading of tumor (months 18-27) 
 
The task above provides details of the development and LOO validation. More rigorous 
validations are needed but the preliminary results shows here have been used to validate the 
grading correspondence and the protocols we have developed, as noted above. 
 
It is important to place the magnitude of our advance in context. Several research efforts have 
been made to develop automated systems for the grading of prostate tissues. The majority of 
systems have been used texture and/or morphological features to characterize and classify tissue 
samples into correct classes. However, the information which pathologists will obtain by using 
such methods may be limited since these only provide the predicted grade in general. The 
prediction also relies on the training data. Most importantly, these prior efforts always sought to 
match a sample completely to provide a diagnosis, rather than provide matching candidates. 
Further, the role of other modalities in the process was not clear. Here, we may also use IR 
chemical imaging data in matching. Our premise is that tissue samples which have the same 
grade and similar characteristics and patterns with the sample of interest will afford more 
information to pathologists and hence, the system enables a matching to a database rather than 
seeking to provide an unequivocal diagnosis. 
 
Future outlook enabled by this progress: 
The matching system would be implemented first for a clinical trial and then, would be ready for 
commercial translation. While a true clinical trial is the next step, some further development of 
the actual methods may be expected. We have built the method into existing software as a user-
friendly software.   
 
 
Task 3. Develop mathematical framework to correlate spectral, spatial and clinical 
parameters with cancer progression 

a. Identify and validate spectral metrics and develop spatial metrics indicative of tumor 
grade (Months 27-30) 

b. Develop prediction algorithm for predicting outcome (Months 30-36) 
Activities: 
We have imaged 460 patients with full outcome data and identified several metrics that are 
indicative of tumor grade (please see task 2 as well). A mathematical framework for correlate the 
spectral, spatial and clinical parameters with cancer progression has been built using logistic 
regression. The prediction algorithm is available for use and will be validated. The task for this 
project was to develop the algorithms and, hence, the task is complete. 
 
Task 3. Develop mathematical framework to correlate spectral, spatial and clinical 
parameters with cancer progression 
Goal: The goal of this task was to evaluate tissue with a view to predict outcome. The emphasis 
especially was on spectral features (metrics) that could be used. 



a. Identify and validate spectral metrics and develop spatial metrics indicative of tumor 
grade (Months 27-30) 

b. Develop prediction algorithm for predicting outcome (Months 30-36) 
Activities: 
We obtained a set of 460 samples in which patients were matched for age, PSA, grade and stage. 
Prostate cancer within half of the patients recurred within 5 years while the others were 
recurrence-free at 10 years. Samples from the entire data set were imaged. We then developed 
spectral metrics to characterize the samples. The relatively simple methods developed previously 
were not able to segment tissue into lethal (recur within 5 years) from indolent disease (does not 
recur in 5 years). Hence, we examined two avenues. In the first, we sought to examine if sources 
of variance were clouding the segmentation ability of the methods. Knowledge of the various 
sources of variance and their effects would help determine the mathematical model to be used. In 
the second, we sought to examine a major issue in the development of biomarkers – namely the 
difference in data sets and determine if the differences between data sets could be repaired by 
computational methods. We describe the first study first and the second one later. 
 
Analysis of Variance in IR imaging data from prostate tissue 
Most biomedical samples, including cells and tissue samples encountered in the prostate, are 
chemically complex and simple molecular compositions cannot be obtained. Hence, the analysis 
of complex tissues often relies on treating the IR spectrum as a signature of the identity and 
physiologic state. Many studies seek to find the spectral differences between given classes of 
samples from a statistical, rather than purely biochemical, perspective. These classes of samples 
may be different grades of disease or benign tissue, for example. Finding an analytical technique 
that can distinguish between disease states is of tremendous technological and medical 
importance as it can potentially aid clinicians and help prevent errors. IR imaging can potentially 
provide a solution by correlating spectral or spatial features with disease states. When suitable 
correlations between spectral differences and classes are found, a protocol may be constructed 
that allows for detection of these disease states in a practical application. Though conceptually 
straightforward, this approach is exceptionally challenging not only because of the subtle 
differences between various components and disease states in tissue but also because of the 
variation in IR spectra that may arise due to other factors and obscure differences between 
disease states. This variation in spectral differences overwhelming differences due to disease 
states is likely a primary cause for the failure of many analytical methods in providing robust 
protocols. Finally, the sample population under consideration may be of limited size, raising 
statistical issues in analyses and inferences. The analyses could be biased as the given samples 
may not be representative of the entire population. The latter two considerations can be 
addressed by careful study design and subsequent analysis. The question of analytic variability 
remains to be resolved and is a topic of much interest in infrared spectroscopy and other 
analytical technologies 

 
Analytic variability can arise from (a) noise in signal measurement, (b) from differences within 

the tissue that leads to differences both within a given sample and between samples from the 
same patient, (c) differences between patients due to biologic diversity, (d) differences due to 
sample handling in different clinical settings or research groups and (e) due to causes not falling 
into any of the above categories. The variation may also be understood to be biological, technical 
or residual. Biological variation arises from different biological characteristics of samples such 



as patients, tissues, cells, subcellular components, etc. It is natural and expected variation, and 
often of interest in an experiment. Technical variation is attributable to both sample preparation 
and FT-IR imaging techniques. Potential sources of technical variation include tissue acquisition, 
fixation, and sectioning, placement of tissue section on the slide and post-preparation handling. 
The very process of data acquisition also introduces variation, such as measurement noise. 
Minimizing technical variation ensures data of high quality. Residual variation refers to the 
unexplained variation in the experiment; for example, environmental conditions – room 
temperature and humidity – that may not be part of the sample or acquisition characteristics. 
Although thoroughly identified, these potential sources of variation may never be complete. 
Accordingly, residual variation will be present and, on occasion, can have a substantial impact 
on the analyses. In such a case, we may either re-identify potential sources of variation or re-
design the experiment. 

 
  Understanding the relative importance of each of these factors and explaining the variance 

observed in large scale tissue studies is critical for developing any real-world application. While 
an understanding of the contributions of variance by various sources can result in improved 
protocol designs, the lack of such understanding brings into question the performance of any 
developed protocol. Hence, in this manuscript, we develop a framework to understand analytic 
variability and its sources in infrared spectroscopic imaging of tissue. This understanding may be 
extended to other analytical techniques and imaging modalities, in general, and may be used to 
improve the practice of IR spectroscopic imaging for biomedical analysis in particular. The first 
challenge to understanding variability is to obtain a data set of sufficient diversity and size. 
Tissue microarrays (TMAs), to this end, are an excellent tool and have been used previously in a 
number of studies. TMAs consist of many samples of tissue arranged in a grid pattern. Multiple 
samples are usually included from the same person, a population of different people and, often, 
from different clinical settings is includes. Multiple TMAs may further be employed to increase 
sample set diversity and size. The effect of the various sources of variation can be analyzed by 
applying analysis of variance (ANOVA) model to the acquired data set. ANOVA is a popular 
statistical model for partitioning the total variance of the measured quantity in an experiment into 
various identifiable factors (or sources of variation), and has been applied for analyzing several 
spectroscopic imaging data: chemical compounds, collagen types, skin lesions, and plant species. 
However, to our knowledge, ANOVA has not been applied to spectroscopic imaging of tissue. 
Here, we present appropriate ANOVA models for different experimental designs of IR imaging 
data from TMAs, evaluate the statistical significance of the sources of variance, estimate 
variance contributions of the identified sources, and quantify the relative contributions of the 
sources to the total variation in the data. Finally, after examining the effect of the sources of 
variance, we also find the most discriminative spectral features and address the aspects of FT-IR 
imaging and TMA techniques that can be improved for better diagnostic protocols in prostate 
cancer. 
 
Four experimental TMAs, containing prostate tissue samples, were obtained from different 
sources (Tissue microarray research program at the National Institutes of Health and Clinomics 
Inc.). The four TMAs contain respectively (i) 86 samples from 16 patients, (ii) 123 samples from 
40 patients, (iii) 121 samples from 80 patients, and (iv) 240 samples from 180 patients. FT-IR-
TMAs were taken at a spatial pixel size of 6.25 μm and a spectral resolution of 4 cm-1. The 
spectral profile of a pixel spans a spectral range of 4,000–720 cm-1. FT-IR data is converted into 



93-dimensional data where each dimension corresponds to a spectral feature, which can be peak 
ratios, peak areas or peak centers of gravity. We note that the unit of observation in a spectral 
analysis is a pixel, but, in designing TMAs, the unit of interest is a tissue sample (called “core”) 
or a patient. The number of pixels, especially of a single histological type such as epithelium, 
often varies substantially across cores and resulting data imbalance may greatly affect the results 
of the analysis. Therefore, we do not employ the entire collection of pixels (or cores) in TMAs, 
but address the issue of data imbalance by taking sub-samples of cores and sub-samples of pixels 
within each core in an attempt to balance the data for each group. The pixels corresponding to 
histologic classes were provided by either an automated histologic recognition method or a 
pathologic review. 
 

Between-histologic class ANOVA model. In a typical TMA setting, many cores are placed in 
an array, one or more cores are obtained from a patient, and cores are often composed of 
multiple histologic classes such as epithelium, stroma, muscle, blood, and nerves, i.e., patients 
nested in an array, cores nested in a patient, and histologic classes nested in a core. Accordingly, 
variability in FT-IR-TMAs data is also distributed in a hierarchical fashion. Identifying five 
potential sources of variation (array, patient, core, histologic class and residual error), we present 
the following ANOVA model (“between-histologic class model”) for this TMA design, 
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where y represent IR absorption of a pixel ( 1,...,w n�� ) in a spectral feature of interest, μ is the 
overall mean, and α, β, γ, and δ denote array ( 1,...,i n�� ), patient ( 1,...,j n�� ), core ( 1,...,k n��

), and histologic class ( 1,...,l n�� ) effect, respectively. αδ, βδ, and γδ are called interaction 
effects whereas α, β, γ, and δ are designated as main effects. ijklw�  and ijklw�  represent 
measurement error and residual error effects, respectively. On the contrary to the hierarchical 
structure of array, patient, and core effects, histologic class effect is crossed with each of array, 
patient, and core effects. Hence, this design is called a partly nested ANOVA. Since both fixed 
(histologic class) and random (array, patient, and core) factors present, it is also called a mixed 
effects ANOVA model (see Supporting Information for details). 

The effect of the factors and their true variances can be estimated by computing ANOVA table 
and applying expected mean squared method which equates the observed and expected mean 
squares18 (see Supporting Information for details). The total variance for (1) model can be 
written as 
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class effects, and 2
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��  are variance components of measurement error and residual error, 
respectively. 2

�� , 
 �
2
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2
� � �� , and 2

��  can be attributable to biological variation as well as 

technical variation. These are due to biological variation because samples possess different 
biological characteristics. There is also technical variation in that variation can arise from any 
step in TMA preparation. 2

��  belongs to technical variation and is separately estimated on the 
assumption that it follows an independent and identically distributed Gaussian distribution over 
the entire spectral regions. We first compute the noise variance over the non-absorbing IR 
spectral regions (1900-2100cm-1) and estimate measurement error for each spectral feature 2

��  is 



complex and reflects the combined effects of biological variation (pixel-to-pixel variation), 
technical variation (processing error), and other unexplained experimental variations. Hence, 
thorough inspection of residual error may be necessary for a precise and incisive analysis. 

TMAs are often obtained from different sources, and the effect of the factors could differ 
significantly across TMAs. In order to further examine the differences, we estimate the variance 
components for each TMA by restricting the (1) ANOVA model to a single TMA. That is, we 
fitted IR data of each TMA to the following model, 


 �jklw j l jl jklw jklwk j ly � � � �� �� � �� � � � � � � .    (2) 

Similarly, the total variance is 
 � 
 �
2 2 2 2 2 2 2 2
total � � �� � �� � � � �� � � � � � � �� � � � � � � . This model is 

also a partly nested ANOVA. 
 
Between-array ANOVA model. Different histologic classes possess dissimilar chemical 

properties and cellular functions. It may introduce substantial variation to FT-IR-TMAs data. 
Eliminating histologic class factor and other related factors from the (1) model, we further 
examine the effect of histologic class on the data. The ANOVA model (“between-array model”) 
can be expressed as  
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Since all factors are random, it is a nested random effects model. The total variance of data can 
be stated as 
 � 
 �
 �

2 2 2 2 2 2
total � � �� � � � �� � � � � �� � � � � . Since heterogeneous histologic classes are 

merged into a core, biological variation may increase in the model. 
 
Between-subcellular component ANOVA model. The histologic classes are composed of a 

number of subcellular components (membrane, cytoplasm, nucleus, cytoskeleton, etc.). By 
further separating a histologic class into subcellular components, we can examine the effect of 
subcellular components for the histologic classes. The model is identical to the above (1) 
ANOVA model. The only difference is that the histologic class effect is replaced with 
subcellular component effect. Here, we restrict the model (“between-subcellular component 
model”) to a single array as follows: 

kmw k m km kmw kmwy � � � �� � �� � � � � �       (4) 
where φ represents sub-cellular component ( 1,..., mm n� ) effect, which is fixed. This is a two 
factor crossed and mixed effects model, and the total variance is expressed as 

2 2 2 2 2 2
total � � �� � �� � � � � �� � � � � . As did in between-array model, eliminating subcellular 

component factor and interaction effect between subcellular component and core from the (4) 
model, the following ANOVA model (“within-epithelium model”) is constructed, 

kw k kw kwy � � � �� � � � .      (5) 
This is a random effects model, and the total variance is expressed as 2 2 2 2

total � � �� � � �� � � . 
 

Variance component analysis identifies discriminative features for histologic analysis. Three 
TMAs (i, ii, iii) were used in this experiment. From each TMA, 26 sample cores from 13 patients 
were selected, and 200 pixels were chosen from each histologic class in a core. The histologic 
segmentation was conducted by a Bayesian classifier19, built on 18 spectral features and achieved 
>0.99 AUC on cell type classification. Although several histologic classes present, we only 



consider epithelium and stroma; data imbalance in other classes is severer. Using between-
histologic class model, ANOVA table (Table 1) and the portions of total variance due to the 
associated factors (Fig. 1A) were computed. 21 out of 93 features were dominated by histologic 
class effect, and either array effect or residual error introduced the most variation into the data 
other than the 21 features. The high variability in histologic class effect indicates that epithelium 
and stroma greatly differ in their IR absorption values, i.e., dissimilar chemical properties. Thus, 
the 21 features are capable of histologic analysis, and for the purpose of histologic 
discrimination, these features could serve as good candidates. In fact, 5 of them were included in 
the Bayesian cell type classifier. This may be attributable to the difference between the datasets 
or redundancy in the features. The Bayesian classifier was optimized for the classification, but 
variance components only show the ability of a single spectral feature, not their combined 
effects. It is probable that due to the redundancy the rest of the 21 features were not selected by 
the Bayesian classifier. Moreover, patient factor has very little effect on the total variation of the 
data, indicating that inferences made or models built on the data would be applicable to the entire 
patient population without or with very few restrictions or complication. Although its 
contribution to the total variance is small, larger variance from core effect than from patient 
effect suggests that the selection of cores is more important than that of patients in constructing 
TMAs. Since the size of a core is relatively small compared to the entire tissue or organ, it is 
likely that some of the selected cores are not representative of the tissue or organ. We also note 
that the small number of core samples could affect the variance estimates. We also note that 
interaction effects, by and large, were negligible except the interaction between core effect and 
histologic class effect. Interestingly, there were 19 features which were dominated by array 
effect, and these may need further assessment and reveal array-specific characteristics. 
Furthermore, we assessed the statistical significance of histologic class effect by computing F-
test statistics, which is the ratio of the mean square of histologic class effect and the means 
square of the interaction effect of histologic class and array (see Supporting Information for 
details). Computing p-values for histologic-class effect, the lower p-values, the larger portions of 
explained variance were observed in general (Fig. 7A); the rank correlation coefficient of -0.57 
(p-value≈0.0) was obtained between the portions of explained variance and the p-values. Thus, 
both variance components and F-test confirm the discriminative ability of the features for 
histologic analysis of tissue samples. 



 
Figure 15. Portions of explained variance with and without histologic class factor. The 
portions of total variance explained by the associated factors are estimated for (a) between-
histologic class model and (b) between-array model and plotted over 93 spectral features. (a) 
p-values of histologic class effect are shown at the bottom.  (a)(b) The spectral features are 
ordered by the portion of total variance due to (a) histologic class effect. Interaction effects 
are not shown for (a). 



Table 3. An example of ANOVA table for between-histologic class model.  

Source   df   MS EMS 

Array   2 
  
0.0167
8 
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Patient(Array)   36  
  
0.0246
2 
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Core(Patient(Array))   39 
  
0.0134
5 
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Histologic class   1 
  
46.990
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Array*Histologic class   2 
  
0.0118
0 
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Patient(Array)*Histologic class   36 
  
0.0160
4 
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Core(Patient(Array))*Histologi
c class   39 

  
0.0135
6 
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Residual error 
  
3104
4 

  
3.443e-
4 

2
��  

Measurement error   
  
4.601e-
6 

2
��  

    

F-test statistics (Histologic 
class)   3980.5  

p-value (Histologic class)   0.000251  

df, MS and EMS denote degrees of freedom, mean squares, and expected mean squares, 
respectively. * indicates the interaction effect between factors. 



Variance component analysis reveals weak discriminative feature for subcellular 
components analysis. To examine the effect of subcellular components, in the (iv) TMA, 
epithelial cells were further divided into two subcellular components: cytoplasm-rich and 
nucleus-rich. The cytoplasm-rich and nucleus-rich pixels were selected by a pathologic review. 
40 cores from 40 patients were chosen, and 100 pixels for each of the two components were 
extracted to build between-subcellular component model. As shown in Fig. 2A, subcellular 
component effect is the dominant source of variation for only 9 features, and residual error is the 
most dominant factor for the rest of the features. Although subcellular component effect is the 
primary source of variation, the variance estimate of subcellular component effect does not 
overwhelm that of other effects as opposed to the huge differences between histologic effect and 
other effects in between-histologic class model. Thus, with the selected cytoplasm-rich and 
nucleus-rich pixels, we do not expect to observe a notable difference in IR spectra. This result is 
consistent with the previous work where ~0.72 AUC was obtained in classifying pixels into 
cytoplasm-rich and nucleus-rich pixels. Residual error is attributable to the similarity in the 
underlying chemical components, errors in selecting the cytoplasmic and nucleus pixels, and 
limitation in FT-IR imaging. That is, both biological and technical variations contribute to 
residual error. Biological variations could be reduced by minimizing cytoplasm and nucleus 
segmentation errors or obtaining higher-resolution FT-IR imaging. Performing repeated 
measurement of FT-IR imaging on the same TMAs could alleviate the contribution of technical 
variations. In addition, we computed F-test statistic for subcellular component effect as the ratio 
of the mean square of subcellular component effect and the means square of the interaction effect 
of subcellular component and core. Analogous to the results from between-histologic class 
model, the larger explained variance due to subcellular component effect, the lower p-values we 
observed, and the rank correlation coefficient of -0.33 (p-value>0.1) was obtained between the 
portions of explained variance and the p-values; however, the p-values were often too small (~0), 
misleading about the significance of subcellular component effect. Accordingly, F-test could not 
effectively provide discriminative features whereas variance components suggest weakly 
discriminating features. We also note that the features, owning high variation from histologic 
class effect in between-histologic class model, were not dominated by subcellular component 
effect in general. This indicates that the chemical properties to distinguish histologic classes 
differ from the properties to differentiate subcellular components. 



 

Figure 16. Portions of explained variance with and without subcellular component factor. 
The portions of total variance explained by the associated factors are estimated for (a) 
between-subcellular component model (b) within-epithelium model and plotted over 93 
spectral features. (a) p-values of subcellular component effect are shown at the bottom, and 
the blue boxes indicate that the corresponding features are histologic class-dominant. (a)(b) 
The spectral features are ordered by the portion of total variance due to (a) subcellular 
component effect. 

Biological variation is the main source of variation in residual error within a core and 
epithelium. Making no differentiation between histologic classes in a core, we fitted the FT-IR-
TMAs data, used to build between-histologic class model, into between-array model, and the 
portions of total variance explained by each factor were computed. As shown in Fig. 7B, residual 



error is, in general, the dominant source of variation over the 93 features. The effects of four 
other factors (array, patient, core, and measurement error) were relatively small, and either array 
effect or core effect was mostly the second dominant source of variation. 16 features were 
dominated by array effect, of which 11 features were also array effect-dominant features in 
between-histologic class model. In comparison with between-histologic class model, combining 
histologic classes, we observed that residual error substantially increased in many features, 
especially for the 21 histologic class-dominant features. Similarly, we constructed the within-
epithelium model using the data fitted into between-subcellular component model. Estimating the 
portions of variance due to core, measurement error, and residual error effects, residual error 
dominated over the other two effects in the entire 93 features (Fig. 8B). Compared to the 
variance components from between-subcellular component model, we again observed significant 
increase in residual error for numerous features including the 9 subcellular component-dominant 
features. Both histologic class and subcellular component factors group similar pixels in 
chemistry into the same group, as a result, decreasing biological variation. This leads us to 
conclude that biological variation is the main source of variation in residual error, especially for 
those 21 histologic class-dominant and 9 subcellular component-dominant features in the data. 
However, note that the interpretation of histologic class effect and subcellular component effect 
should be limited to the population under the experiment since both effects are fixed. 

 
Differences in the effect of the associated factors are observed across TMAs. In order to 
investigate the differences in variance estimates across TMAs, each FT-IR-TMA data is fitted to 
the (2) ANOVA model. The proportions of variance estimates were, in general, very similar 
across TMAs, and, comparing to between-histologic class model, the similar trends were 
observed for the main effects; 16 out of the 21 histologic class-dominant features (between-
histologic class model) showed high variability due to histologic class effect across all three 
TMAs; the rest of the features were mostly dominated by residual error across TMAs. 
Examining the 19 array-dominant features from between-histologic class model, we observed the 
differences in the variance components of not only histologic class effect but also other main and 
interaction effects across TMAs. In Fig. 9, for the first four features, although residual error was 
the most dominant source of variation, the relative orders of other factors varied greatly across 
TMAs, for example, histologic class effect and patient effect in the (i) TMA differ from the other 
2 TMAs; the next four features showed unusually high variability in the (i) TMA  and moderate 
dominance in the (iii) TMA from histologic class effect, but, in the (ii) TMA, the effect was not 
dominant or its contribution is close to residual error; examining the last 11 features, the 
differences in the portions of variance due to  both main and interaction effects were also 
observed. For histologic analysis, these 19 array-dominant features may be avoided. The four 
features, in particular, introducing high variation from histologic class effect in the (i) TMA 
could be specific to the population represented by the (i) TMA, and thus may distract the 
histologic analysis and its translation into clinical practice. Computing p-values of histologic 
class effect, as observed in between-histologic class model, features with higher variance 
components possess lower p-values, but weaker correlations between them (rank correlation 
coefficients of -0.36 ~ -0.43) were observed. We note that the computation of F-test statistic is 
not identical to between-histologic class model. Here, the denominator is the mean square of the 
interaction effect between histologic class and patient. 



 
Figure 17. Portions of explained variance for array-dominant features across TMAs. 
Portions of variance are shown for (a) between-array model and (b,c,d) between-histologic 
class model restricted to each of (i,ii,iii) TMAs. Spectral features are ordered by the portion 
of total variance due to (a) array effect. 

Correlating Changes Between two Data Sets 
There is an underlying assumption on most model building processes: given a learned classifier, 
it should be usable to explain unseen data from the same given problem. Despite this seemingly 
reasonable assumption, when dealing with biological data it tends to fail; where classifiers built 
out of data generated using the same protocols in two different laboratories can lead to two 
different, non-interchangeable, classifiers. There are usually too many uncontrollable variables in 
the process of generating data in the lab and biological variations, and small differences can lead 
to very different data distributions, with a fracture between data. This paper presents a genetics-
based machine learning approach that performs feature extraction on data from a lab to help 
increase the classification performance of an existing classifier that was built using the data from 
a different laboratory which uses the same protocols, while learning about the shape of the 
fractures between data that motivated the bad behavior. This is a critical step in understanding 
differences between our different prostate cancer data sets here. 
 
The specific problem this study attempts to solve is the following: we have data from one 
laboratory (dataset A), and derive a classifier from it that can predict its category accurately. We 
are then presented with data from a second laboratory (dataset B). This second dataset is not 
accurately predicted by the classifier we had previously built due to a fracture between the data 
of both laboratories. We intend to find a transformation of dataset B (dataset S) where the 
classifier works. Evolutionary computing, as introduced by Holland, is based on the idea of the 
survival of the fittest, evoked by the natural evolutionary process. In genetic algorithms (GAs), 
solutions (genes) are more likely to reproduce the fitter they are, and random sporadic mutations 
help maintain population diversity. Genetic Programming (GP) is a development of those 
techniques, and follows a similar pattern to evolve tree-shaped solutions using variable-length 



chromosomes. Feature extraction ‘consists of the extraction a set of new features from the 
original features through some functional mapping’. Our approach to the problem can be seen as 
feature extraction, since we build a new set of features which are functions of the old ones. 
However, we have a different goal than that of classical feature extraction, since our intention is 
to fit a dataset to an already existing classifier, not to improve the performance of a future one. In 
this work, hence, we intend to demonstrate the use of GP-based feature extraction to unveil 
transformations in order to improve the accuracy of a previously built classifier, by performing 
feature extraction on a dataset where said classifier should, in principle, work; but where it does 
not perform accurately enough. We tested our algorithm first on artificially-built problems 
(where we apply ad hoc transformations to datasets from which a classifier has been built, and 
use the dataset resulting from those transformations as our problem dataset); and then on a real-
world application where TMA data from two different medical laboratories regarding prostate 
cancer diagnosis are used as datasets A and B. Even though the method proposed does not 
attempt to reduce the number of features or instances in the dataset, it can still be regarded as a 
form of data reduction because it unifies the data distributions of two datasets; which results in 
the capability of applying the same classifier to both of them, instead of needing two different 
classifiers, one for each dataset. 
 
In our previous work, we successfully applied a genetics-based approach to the development of a 
classifier that obtained human-competitive results based on FTIR data. However, the classifier 
built from the data obtained from one laboratory proved remarkably inaccurate when applied to 
classify data from a different hospital. Since all the experimental procedure was identical; using 
the same machine, measuring and post-processing; and having the exact same lab protocols, both 
for tissue extraction and staining; there was no factor that could explain this discrepancy. While 
one track was to understand the sources of variance, here we examined whether we could bridge 
the differences using GAs. The experimental and mathematical details are presented in the 
attached manuscript “Repairing fractures between data using genetic programming-based 
feature extraction: A case study in cancer diagnosis”. 
 
We summarize below the results for the prostate cancer problem in terms of classifier accuracy. 
The results obtained can be seen in Table 2. In that table, dataset A is the one from the first lab; 
which was used to build the classifier, dataset B is the one coming from the second lab, and 
dataset S is the result of the application of GP-RFD. To check whether the full dataset B was 
needed to evolve an effective transformation, we also tested using just half of it to train GP-RFD, 
and the other half to test (2-fold cross validation). These results are also included in Table 9. The 
performance results are excellent for a number of reasons. First and foremost, GP-RFD was able 
to find a transformation over the data from the second laboratory that made the classifier work 
just as well as it did on the data from the first lab, effectively finding the hidden perturbations 
that prevented the classifier from working accurately. The second positive conclusion to be 
obtained from the results is the generalization power of GP-RFD. As can be observed from the 
test results, GP-RFD does not ‘cheat’ by over-learning on the known data, and works well when 
transforming new, previously unseen, samples. Third, the results show GP-RFD was capable of 
obtaining excellent results using just half of the B dataset to train. This result highlights the 
power of the method to unveil the hidden transformation from a relatively low number of 
samples. We also performed a Wilcoxon signed-ranks test to evaluate the performance of GP-
RFD over the case of study problem. In order to do it, we used the results from each partition in 



the 5-fold cross validation procedure. We ran the experiment four times, resulting in 4   5 = 20 
performance samples to carry out the statistical test. As we did before, R+ corresponds to the 
first algorithm in the comparison winning, and R  to the second one. Table 10 shows the results. 
The results on the case study problem are exactly the same as those achieved in the benchmark 
problems. We can then conclude GP-RFD was capable of repairing the existing fracture between 
the data from both laboratories. Again, this conclusion assumes class distribution did not change. 
It is a given in this case, since we know the class distribution to be equal in datasets A and B, but 
is an issue that has to be kept in mind when applying the method to other problems. 
 
Table 4. Classifier performance results 

 
 
Table 5. Statistical testing of the new protocol.  

 
 
We have presented GP-RFD, a new algorithm that approaches a common problem in real life for 
which not many solutions have been proposed in evolutionary computing. The problem in 
question is the repairing of fractures between data by adjusting the data itself, not the classifiers 
built from it. We have developed a solution to the problem by means of a GP-based algorithm 
that performs feature extraction on the problem dataset driven by the accuracy of the previously 
built classifier. We have tested GP-RFD on a set of artificial benchmark problems, where a 
problem dataset is fabricated by applying an ad-hoc disruption to an original dataset, and it has 
proved capable of solving all the transformations presented showing good performance both in 
train and, more importantly, test data. We have also being able to apply GP-RFD to the problem 
of prostate tissue classification, where data from two different laboratories regarding prostate 
cancer diagnosis was provided, and where the classifier learned from one did not perform well 
enough on the other. Our algorithm was capable of learning a transformation over the second 
dataset that made the classifier fit just as well as it did on the first one. The validation results 
with 5-fold cross validation also support the idea that the algorithm is obtaining good results; and 
has a strong generalization power. Lastly, we have applied a statistical analysis methodology that 
supports the claim that the classifier performance obtained on the solution dataset significantly 
outperforms the one obtained on the problem dataset. There is, however, one point where the 
proposed method has not been successful. The learned transformations have failed 
to provide any information about why the fracture appeared between the data from the two 
laboratories.  
 
 
Task 4. Write reports and finalize algorithms into software (Months 33-36) 



A number of reports (invention disclosure, conference etc.) have been written and manuscripts 
based on this work have been submitted and have been printed as detailed in the following 
sections. 
 
In summary, the promised work has been accomplished to a reasonable degree and has opened 
up significant doors to future progress in prostate pathology as a research direction as well as for 
patients and clinicians. 



Key Research Accomplishments 
� A genetic algorithm based  method to distinguish benign from malignant epithelium using 

infrared spectroscopic imaging data was shown to be effective. Large scale validation shows 
promising results and a manuscript is being written. 

� We determined that one of the key factors in understanding our data was the spatial structure 
of the tissue, that closely affected the IR data. A series of simulations were conducted after 
developing a rigorous optical model to predict distortions. Results are reported in two 
manuscripts in Anal. Chem.  

� A combination of IR and conventional pathology imaging has been developed and extensively 
validated. 

� A method to correlate Gleason grades with measured data has been developed. Larger 
validation studies are needed. 

� A number of patent applications and invention disclosures as well as peer-reviewed 
publications have resulted from these activities.  

 

Reportable Outcomes………………………………………………………………      

Manuscripts 
Peer reviewed manuscripts published 
1. M.J. Walsh, R.K. Reddy, R. Bhargava “Label-free Biomedical Imaging with Mid-Infrared 

Microspectroscopy” submitted (2011) 
2. R.K. Reddy, M.J. Walsh, R. Bhargava “A framework for visualizing multidimensional relationships in 

large spectroscopic imaging data sets” Appl. Spectrosc. Submitted (2011) 
3. M.J. Walsh, M.V. Schulmerich, R. Bhargava “Progress, critical challenges and a roadmap for 

translating infrared spectroscopic imaging for cancer histopathology” Chem. Rev., To be 
submitted (2011 – Invited) 

4. S. Holton, M.J. Walsh, A. Kajdacsy-Balla, R. Bhargava “Label-free characterization of cancer-activated 
fibroblasts in cell culture and clinical tissues using infrared spectroscopic imaging” Biophys. J. In press 
(2011) 

5. S.E. Holton, M.J. Walsh, R. Bhargava “Localizing subcellular biochemical transformations in cancer-
activated fibroblasts using high-resolution infrared spectroscopic imaging” Analyst 136, 2953-2958 
(2011) DOI: 10.1039/c1an15112f 

6. R. Kong, R. Bhargava “Characterization of Porcine Skin as a Model for Human Transdermal Diffusion” 
Analyst 136, 2359 - 2366 (2011) DOI: 10.1039/C1AN15111H 

7. M.J. Nasse, M.J. Walsh, E.C. Mattson, R. Reininger, A. Kajdacsy-Balla,V. Macias, R. Bhargava,* C.J. 
Hirschmugl* “High-resolution Fourier transform infrared chemical imaging with multiple synchrotron 
beams” Nat. Methods, 8, 413-416 (2011) DOI:10.1038/NMETH.1585 [*Joint corresponding authors] 

� News and Views: F.L. Martin “Shining a new light into molecular workings” Nat. Methods, 8, 
385–387 (2011)  

� Author profile by M. Baker Nat. Methods, 8, 363 (2011) 
8. J. G. Moreno-Torres, X. Llora, D.E. Goldberg, R. Bhargava “Repairing Fractures between Data using 

Genetic Programming-based Feature Extraction: A Case Study in Cancer Diagnosis” Information 
Sciences, In press (2011). 

9. J.T. Kwak, S.M. Hewitt, S. Sinha, R. Bhargava “Multimodal microscopy for automated histologic 
analysis of prostate cancer” BMC Cancer 11, 62- (2011) [Designated “Highly Accessed”] 

10. B.J. Davis, P.S. Carney, R. Bhargava “Infrared Microspectroscopy of Intact Fibers” Anal. Chem. 83, 
525–532. (2011) 



11. B. Kwon, C. Wang, K. Park, R. Bhargava, W.P. King “Themomechanical Sensitivity of 
Microcantilevers in the Mid-infrared Spectral Region”, Nano Micro Thermophys Eng,  15, 16-28 (2011) 

12. J. G. Moreno-Torres, X. Llora, D.E. Goldberg, R. Bhargava “On the homogenization of data from two 
laboratories using genetic programming” Lec. Notes Comp. Sci., 6471/2010, 185-197 (2010), DOI: 
10.1007/978-3-642-17508-4_12. 

13. A.K. Kodali, M.V. Schulmerich, R. Palekar, X. Llora, R. Bhargava  “Optimized Nanospherical Layered 
Alternating Metal-dielectric Probes for Optical Sensing” Opt. Exp., 18, 23302-23313 (2010) 

14. R.K. Reddy, R. Bhargava “Automated noise reduction for accurate classification of tissue from low 
signal-to-noise ratio imaging data” Analyst,  135, 2818-2825 (2010) DOI: 10.1039/C0AN00350F 

15. A.K. Kodali, X. Llora, R. Bhargava “Optimally tailored Raman spectroscopic probes for ultrasensitive 
and highly multiplexed assays” Proc. Natl. Acad. Sci., 107, 13620-13625 (2010) DOI: 
10.1073/pnas.1003926107 

16. A.K. Kodali, M.V. Schulmerich, J. Ip, G. Yen, B.T. Cunningham, R. Bhargava “Narrowband Mid-
infrared reflectance filters using guided mode resonance” Anal. Chem., 82, 5697–5706 (2010) DOI: 
10.1021/ac1007128 

17. M.V. Schulmerich, A.K. Kodali, R.K. Reddy, L.J. Elgass, R. Bhargava “Dark field Raman Microscopy” 
Anal. Chem., 82, 6273–6280 (2010) DOI: 10.1021/ac1014194 

18. R. Kong, R.K. Reddy, R. Bhargava “Characterization of Tumor Progression in Engineered Tissue using 
Infrared Spectroscopic Imaging” Analyst 135, 1569-1578 (2010) DOI: 10.1039/c0an00112k 

19. B.J. Davis, P.S. Carney, R. Bhargava “Theory of mid-infrared absorption microspectroscopy. II. 
Heterogeneous samples” Anal. Chem., 82, 3487–3499 (2010) DOI: 10.1021/ac902068e 

20. B.J. Davis, P.S. Carney, R. Bhargava “Theory of mid-infrared absorption microspectroscopy. I. 
Homogeneous samples” Anal. Chem., 82, 3474–3486 (2010) DOI: 10.1021/ac902067p 

21. X. Llora, A.Priya, R. Bhargava “Observer-Invariant Histopathology using Genetics-Based Machine 
Learning” Nat. Computing, 8, 101-120 (2009) 

 
Book Chapters 
1. M.J. Walsh, R. Bhargava “Infrared spectroscopic imaging: an integrative approach to 

pathology” G. Popescu, ed. “Nanobiophotonics” McGraw-Hill (2010) 
2. R.K. Reddy, R. Bhargava “Chemometric methods for biomedical Raman spectroscopy and 

imaging” M.D. Morris, P.Matousek, eds. “Emerging Raman Applications and Techniques in 
Biomedical and Pharmaceutical Fields”, Springer-Verlag, Berlin Heidelberg (2010) 

3. A.K. Kodali, R. Bhargava "Nanostructured Probes to Enhance Optical and Vibrational 
Spectroscopic Imaging for Biomedical Applications", Y.Y. Fu and A. Narlikar, eds. “The 
Oxford handbook of Nanoscience and Technology: Vol. III”, Oxford University Press, Oxford, 
UK (2010) 
 

Other manuscripts 
1. M.J. Walsh, M.J. Nasse, F.N. Pounder, V. Macias, A. Kajdacsy-Balla, C. Hirschmugl, R. 

Bhargava “Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human 
Tissues” AIP Conference Proc. Vol. 1214 WIRMS 2009 5th international workshop on infrared 
microscopy and spectroscopy with accelerator based sources pp. 105-107 

2. F.N. Pounder, R.K. Reddy, M.J. Walsh, R. Bhargava “Validating the cancer diagnosis potential 
of mid-infrared spectroscopic imaging” Proc. SPIE 7186, art. no. 71860f   

3. R. Bhargava , B.J. Davis, “Histologic models for optical tomography and spectroscopy of 
tissues” Proc. SPIE 7174, 71742H (2009), DOI:10.1117/12.810119   

 
Presentations 



Invited conference presentations 
First author is the presenting author; First author is also the invited author unless indicated by * 
1. R. Bhargava, M.J. Walsh, R.K. Reddy, J.T. Kwak, A. Balla “Chemical imaging for histopathology” 

New Frontiers and Grand Challenges in Laser-Based Biological Microscopy, Telluride, CO, August 
2011 

2. R. Bhargava “Infrared spectroscopic imaging for label-free biomedical informatics” OSA topical 
meeting on optical sensors, Toronto, June 2011 

3. R. Bhargava “Infrared spectroscopic imaging: a new direction for an old chemical imaging technique” 
Central Regional Meeting of the ACS, Indiana, June 2011 

4. R. Bhargava “Chemical imaging for histopathology”, Pittcon 2011, Atlanta, March 2011 
5. R. Bhargava "Systems pathology with infrared spectroscopic imaging" Pacifichem 2010, Honolulu, HI, 

December 2010 
6. R. Bhargava, M.V. Schulmerich, A.K. Kodali, R.K. Reddy and M.J. Walsh “Chemical imaging for 

automated histopathology”, Eastern Analytical Symposium, Somerset, November 2010 
7. R. Bhargava, M.V. Schulmerich, A.K. Kodali, X. Llora, R.K. Reddy, M. Kole “Using computational 

modeling to improve Biomedical Raman microscopy", Eastern Analytical Symposium, Somerset, 
November 2010 

8. R. Bhargava “Chemical imaging for molecular pathology” Cancer  Colloquia VII, St. Andrews, 
Scotland, November 2010 

9. R. Bhargava, R.K. Reddy, J. Ip, F.N. Pounder, M.V. Schulmerich, D. Mayerich, X. Llora, R. Kong, M.J. 
Walsh “Infrared Spectroscopic Imaging for Label-Free and Automated Histopathology” Frontiers in 
Optics, Rochester, October 2010 

10. R. Bhargava, A. K. Kodali, M. V. Schulmerich, X. Llora and R. K. Reddy “Integrating physics with 
chemometrics for enhanced vibrational spectroscopic imaging”, FACSS 10, Raleigh, October 2010 
[Meggers award symposium] 

11. R. Bhargava, M. V. Schulmerich and R. K. Reddy “Discrete frequency infrared spectroscopic imaging 
with a quantum cascade laser – rationale and potential”, FACSS 10, Raleigh, October 2010 

12. R. Bhargava, P.S. Carney, R.K. Reddy, A.K. Kodali “Modeling distortions in infrared spectroscopic 
imaging”, FACSS 10, Rayleigh, October 2010 

13. R. Bhargava “Enabling prostate pathology with infrared spectroscopic imaging – a roadmap for clinical 
translation”, SPEC2010, Manchester, June 2010 (Plenary opening lecture) 

14. R. Bhargava “Non-perturbing cancer diagnostics using  infrared spectroscopic imaging”, Pittcon 2010, 
Orlando, March 2010 

15. R. Bhargava “Progress towards cancer pathology using infrared spectroscopic imaging” , Pittcon 2010, 
Orlando, March 2010 

16. R. Bhargava “Enabling systems pathology by infrared spectroscopic imaging”, Pittcon 2010, Orlando, 
March 2010 

17. R. Bhargava “Pathology without pathologists?” Pathological Society of Great Britain and Ireland, 
London, January 2010 

18. Bhargava, R.K. Reddy, M. Schulmerich, A.K. Kodali, F.N. Pounder B.J. Davis “Next-generation 
infrared imaging for biomedical spectroscopy”, FACSS 09, Louisville, October 2009 

19. R. Bhargava, J. Ip, A.K. Kodali, F.N. Pounder B.J. Davis “Ultrafast IR imaging for Biomedical 
applications”, ICAVS-5, Melbourne, July 2009 (Plenary Lecture) 

20. R. Bhargava “Imaging: Does it really offer more than 'just' pretty pictures”, SAS 50 years symposium, 
Pittcon 09, Chicago, March 2009  

21. R. Bhargava, R.K. Reddy “The critical role of controlled quality of spectral information and sampling 
on automated histologic recognition”, Pittcon 09, Chicago, March 2009 

22. R. Bhargava, F.N. Pounder, X. Llora and R.K. Reddy “Enhancing the tissue segmentation capability of 
fast infrared spectroscopic imaging via chemometric methods", FACSS08, Reno, September 2008 

23. R. Bhargava, F.N. Keith, R.K. Reddy and A.K. Kodali “Practical infrared spectroscopic imaging 
instrumentation for translating laboratory results to clinical settings”, FACSS08, Reno, September 2008 



24. R. Bhargava “Spectroscopic Imaging for an Automated Approach to Histopathologic Recognition in 
Prostate Tissue” 82nd Annual North Central Section American Urological Association Meeting, Chicago, 
September 2008 

25. R. Bhargava,  R.K. Reddy,  A.K. Kodali “Ultrafast mid-infrared spectroscopic imaging by combined 
computational and experimental optimizations” ISSSR 2008, Hoboken, June 2008 

26. R. Bhargava, R.K. Reddy, R. Kong, G. Srinivasan “Engineering practical protocols for histopathology 
of human tissues and models using infrared spectroscopic imaging”, Pittcon08, New Orleans, March 
2008 

27. R. Bhargava, R.K. Reddy, R. Kong, F. N. Keith, G. Srinivasan “Automated Cancer Histopathology by 
Practical Infrared Spectroscopic Imaging: Progress and Potential” The  International Conference on 
Perspectives in Vibrational Spectroscopy (ICOPVS), Thiruvananthapuram, Kerala ,  India, February 
2008 (Plenary Lecture) 

 
 
Other invited presentations 
28. National Institute for Standards and Technology (NIST), Gaithersburg, 2011 
29. Center for nanoscale science and technology annual symposium, University of Illinois, Urbana, 2011 
30. Young Breast Cancer Survivors coalition symposium, Urbana, 2010 
31. Synchrotron Research Center, Madison, WI, 2010 
32. iOptics Seminar, University of Illinois at Urbana-Champaign, Urbana, 2010  
33. Bruker Optics users meeting, Boston, 2010 
34. University of Illinois Cancer Center, UIC, Chicago, 2010 
35. Department of Bioengineering, Ohio State University, 2009 
36. Beckman Institute Director’s Seminar Series, UIUC 2009 
37. Department of Chemistry, University of Tennessee, Knoxville, 2009 
38. BioInterest Group Seminar, Mechanical Science and Engineering, UIUC, 2008 
39. Lester Wolfe Workshop, MIT, 2008 
40. Translational Biomedical Research Seminar, Veterinary Medicine, UIUC, 2008 
41. Vistakon, A Division of Johnson and Johnson, Jacksonville, 2008 
42. Laser Science Center, Indian Institute of Technology, Kanpur, 2008 

Contributed presentations 
First author is the presenting author, unless indicated by * 
1. M.J. Walsh, D. Mayerich, E.L. Wiley, R. Emmadi, A. Kajdacsy-Balla, R. Bhargava R. “Mid-Infrared 

Spectroscopic Imaging for Breast Tissue Histopathology: Towards 'Stainless Staining” 1st Congress 
of the International Academy of Digital Pathology, Quebec, Canada, August 2011. 

2. R.K. Reddy, B.J. Davis, P.S. Carney, R. Bhargava “Modeling Fourier transform infrared 
spectroscopic imaging of Prostate and breast cancer tissue specimens” IEEE International Symposium 
on Biomedical Imaging (ISBI), Chicago, March 2011 

3. J.T. Kwak, S. Sinha, R. Bhargava “Histological segmentation for infrared spectroscopic imaging 
using frequent pattern mining” IEEE International Symposium on Biomedical Imaging (ISBI), 
Chicago, March 2011 

4. M.J. Walsh, R. Bhargava “Towards Comprehensive Histopathological Analyses in Breast and 
Prostate Tissue Using Mid-IR Spectroscopic Imaging” FACSS 2010, Raleigh, October 2010 

5. R.K. Reddy, B.J. Davis, R. Bhargava “Enhanced Models for Fourier Transform Infrared (FT-IR) 
Spectroscopic Imaging of Human Tissue Specimens” FACSS 2010, Raleigh, October 2010 

6. M.J. Walsh, J. Ip, C. Cvetkovic, R. Bhargava “Mid-IR Imaging for Identification of Cells and Mucin 
Subtype in the Gastrointestinal Tract” FACSS 2010, Raleigh, October 2010 



7. B. Kwon, M.V. Schulmerich, L. Elgass, R. Kong, S. Holton, R. Bhargava, W.P. King “Infrared 
Imaging Spectrometry using an Atomic Force Microscope” MRS Fall Meeting, Boston, November 
2010  

8. M.J. Walsh, R. Bhargava “Histopathological Analyses in Breast and Prostate Tissue Using Mid-IR 
Spectroscopic Imaging” SPEC 2010, Manchester, June 2010 

9. R.K. Reddy, R. Bhargava “Modeling, Data Visualization and Histopathology using Fourier 
Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Specimens”, BMES 2009 
Pittsburgh, PA, October 2009 

10. M. J. Walsh, M. J. Nasse, F. N. Pounder, V. Macias, A. Kajdacsy-Balla, C. Hirschmugl, R. Bhargava 
“Mid-infrared spectroscopic imaging of prostate tissue towards cancer diagnosis and prognosis”, 
BMES 2009, Pittsburgh, October 2009 

11. M. J. Walsh, M. J. Nasse, F. N. Pounder, V. Macias, A. Kajdacsy-Balla, C. Hirschmugl, R. Bhargava 
“Synchrotron FT-IR imaging for identification of cell types within human tissues”, WIRMS 2009, 
Banff, Canada, September 2009   

12. F.N. Pounder, R. Bhargava “Human-Competitive Histologic Follow-up to Breast Cancer Screening with 
Mid-IR Spectroscopic Imaging,” Pittcon, Chicago, March 2009 

13. R.K. Reddy, R Bhargava “Automated and fast histologic characterization in urology: progress towards 
an unmet clinical need”, Urology: Diagnostics, Therapeutics, Robotics, Minimally Invasive, and 
Photodynamic Therapy, BiOS 2009, San Jose, CA  

14. R.K. Reddy, F.N. Pounder, R. Bhargava “Validating the cancer diagnosis potential of mid-infrared 
spectroscopic imaging”, SPIE Photonics West - BiOS 2009, San Jose, CA    

15. J. Ip, R. Bhargava “Integrating instrumentation, computation and sampling for a high throughput 
approach to automated histology by mid-infrared microscopy”, Advanced Biomedical and Clinical 
Diagnostic Systems VII, SPIE Photonics West - BiOS 2009, San Jose, CA    

16. M.J. Walsh, F.N. Pounder, R. Bhargava “Spectral pathology in breast cancer using mid-infrared 
spectroscopic imaging”, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII, 
SPIE Photonics West - BiOS 2009, San Jose, CA    

17. R. Bhargava, A.K. Kodali, F.N. Pounder, R.K. Reddy “High-speed Infrared Spectroscopic Imaging for 
Tissue Histopathology”, EAS 2008, Somerset, November 2008 

 
Funding received for based on work supported by this award 
     
Project/Proposal Title: 
Infrared microscopy for prostate pathology  (Role: PI) 
Source of Support:  National Institutes of Health 
Total Award Amount:  $ 1 832, 819 Total Award Period Covered: 02/01/2010-12/31/2014 
Location of Project:  Urbana, IL 
Person-Months Per Year Committed to the       Cal:  Acad: Sumr:  1.0 
 
Funding applied for based on work supported by this award 
     
None at present 
 
 
Employment or research opportunities applied for and/or received based on 
experience/training supported by this award. 
 
Dr. Brynmor Davis, a post-doctoral fellow working on this project obtained employment with 
Creare Inc., NH. 



 
Dr. Gokulakrishnan Srinivasan, a post-doctoral fellow working on this project obtained employment with 
Bruker Optics. 
 

Conclusion……………………………………………………………………………  

The work accomplished demonstrates clear potential and protocols for classifying prostate tissue. 
If the protocols are validated in on-going larger studies and translated to the clinic, a new tool for 
prostate histopathology will be available for pathologists and benefits will be realized by 
patients. 
 

So What Section 

An automated method to assist prostate pathologists is available and can rapidly determine the 
presence of cancer in biopsies. An automated aid to grading is available to aid pathologists in 
making accurate decisions. Clinical translation of these discoveries can directly improve prostate 
healthcare, resulting in better treatment of individuals. 
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Abstract Fourier transform infrared (FTIR) chemical im-
aging is a strongly emerging technology that is being
increasingly applied to examine tissues in a high-throughput
manner. The resulting data quality and quantity have
permitted several groups to provide evidence for applica-
bility to cancer pathology. It is critical to understand,
however, that an integrated approach with optimal data
acquisition, classification, and validation is necessary to
realize practical protocols that can be translated to the clinic.
Here, we first review the development of technology
relevant to clinical translation of FTIR imaging for cancer
pathology. The role of each component in this approach is
discussed separately by quantitative analysis of the effects
of changing parameters on the classification results. We
focus on the histology of prostate tissue to illustrate factors
in developing a practical protocol for automated histopa-
thology. Next, we demonstrate how these protocols can be
used to analyze the effect of experimental parameters on
prediction accuracy by analyzing the effects of varying
spatial resolution, spectral resolution, and signal to noise
ratio. Classification accuracy is shown to depend on the
signal to noise ratio of recorded data, while depending only
weakly on spectral resolution.

Keywords Fourier transform infrared spectroscopy .

FTIR imaging . Infrared microscopy . Prostate .

Histopathology .Microspectroscopy

Introduction

Cancer is one of the leading causes of death in the western
world and is becoming increasingly prevalent worldwide. It
is well established that appropriate therapy for cancers
diagnosed early generally leads to improved prognosis and
longer survival. Consequently, population screening tests to
detect disease are increasingly being deployed. The
emphasis in screening populations is on obtaining a high
sensitivity through simple diagnostic tests. For example, the
prostate-specific antigen (PSA) assay [1] helps triage
persons at risk for prostate cancer. A cutoff level (typically
4 ng mL−1) or increase in PSA velocity implies that the
screened person should be at heightened surveillance and
typically undergoes a biopsy to confirm disease. Morpho-
logic structures in biopsied tissue, as diagnosed by a
pathologist, are the only definitive indicator of disease
and form the gold standard of diagnosis [2]. Along with
clinical history, stage, and PSA values, pathologic diagno-
ses form a cornerstone of clinical therapy and serve as a
basis for a vast majority of research activity [3].

Typically, multiple samples are withdrawn from the
organ during biopsy. Extracted tissue samples are fixed,
embedded, and sectioned (typically to 1- to 5-μm thickness)
onto a glass slide for review. By itself, tissue does not have
much useful contrast in optical brightfield microscopy.
Hence, the prepared slide is stained with dyes. A mixture of
hematoxylin and eosin (H&E) is commonly employed,
staining protein-rich regions pink and nucleic acid-rich
regions of the tissue blue, for example, as shown in Fig. 1.
Using the contrast, a trained person can recognize specific
cell types and alterations in local tissue morphology that are
indicative of disease. In prostate tissue, epithelial cells line
three-dimensional ducts. In two-dimensional thin sections,
thus, the cells appear to line empty circular regions (lumen).
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Distortions in normal lumen appearance provide evidence
of cancer and characterize its severity (grade). The process
is fundamentally a manual pattern recognition that seeks
to match observations to known healthy or diseased
morphologies.

Manual examination of biopsies is very powerful in that
humans can not only recognize disease generally but can
also overcome confounding preparation artifacts, detect
unusual cases, and recognize deficiencies in diagnostic
quality This capability of considering and neglecting fea-
tures based on prior knowledge is crucial for accurate and
robust diagnoses. The process, however, is time consuming,
allows for limited throughput and, frequently, leads to
variance in subjective judgments about the disease severity,
i.e., grade [4]. As an alternative, computer-based pattern
recognition approaches to diagnose disease may provide
more accurate, reproducible, and automated approaches that
could reduce variance in diagnosis while proving econom-
ically favorable. Hence, attempts have been made to
characterize morphology using H&E image analysis as
well as biomarkers to stain for specific molecular features.
Automated approaches that can rival human performance in
usual clinical settings, however, are still unavailable.
Specifically, the attributes of high accuracy and robust
applicability are lacking.

The information content of H&E-stained images is
limited and attempts to automatically recognize structural
patterns indicative of prostate cancer, unfortunately, have
not led to clinical protocols. Similarly, probe-based molec-
ular imaging can provide exquisite information regarding
the location and content of specific epitopes but is limited
by complex diseases not expressing universally the same
epitopes or panels of markers. Stains used can generally
detect one feature that may aid diagnosis (e.g., AMACR)
but do not provide entire diagnostic information in
themselves. An exciting alternative is emerging in the form
of chemical imaging and microscopy [5]. As opposed to
conventional dye-assisted imaging or probe-assisted molec-
ular imaging, chemical imaging [6] seeks to directly
measure the identity and/or concentration of chemical
species in the sample using spectroscopy. Hence, no

molecular probes (MPs) are needed to see the presence of
specific epitopes; instead computer algorithms are used to
extract information from the data (instead of MP hybrid-
ization) and statistical methods are used to provide
confidence (as opposed to brown tints for MPs). The
approach is limited only by the ability of the technology to
sense specific types of molecules or otherwise resolve
chemical species and morphologic structures. Among the
prominent approaches are vibrational spectroscopic imag-
ing, both Raman and infrared (IR), as well as mass
spectroscopic imaging (MSI) [7, 8] and magnetic resonance
spectroscopic imaging (MRSI) [9]. While each technology
promises a specific measurement (e.g., proteins or meta-
bolic products) for specific situations (e.g., in vivo or ex
vivo), IR spectroscopic imaging [10] is particularly attrac-
tive for the analysis of tissue biopsies in that it permits a
rapid and simultaneous fingerprinting of inherent biologic
content, extraneous materials, and metabolic state [11–14].

IR spectroscopic imaging, generally practiced using
interferometry and termed Fourier transform infrared
(FTIR) spectroscopic imaging or, succinctly, FTIR imaging,
offers a particular combination of spatial, spectral, and
chemical detail [15]. Limitations of FTIR imaging include
coarser spatial resolution compared to Raman imaging or
high powered optical microscopy and lack of specific
molecular detail compared to MSI. Tissue biopsies are
examined as thin sections on a solid substrate. The tissue is
dehydrated and is stable due to fixation. Typically, struc-
tures of pathologic interest are several to hundreds of
micrometers in size, requiring fairly moderate magnifica-
tions for decision making. These conditions imply that the
need to image in vivo, at exceptionally high spatial
resolution, or in aqueous environments is not critical and
that standard pathologic laboratory processing can be
employed for IR imaging. Due to the linear absorption
process being utilized, the signal from IR spectroscopy is
large and readily obtained, promising relatively simple
instrumentation. Hence, the technology provides a platform
that is potentially useful for clinical practice in pathology. It
must be emphasized that no particular technology is ideally
suited to all applications but a careful matching of the

Fig. 1 Brightfield microscopy
images of unstained (left) and
stained (right) prostate tissue
sections. Hematoxylin and eosin
(H&E) stains provides contrast,
allowing a trained person to
recognize epithelial cells and
ductal structure (lumen), while
ignoring artifacts and confound-
ing morphologies. A trained
human can also learn to robustly
recognize patterns within lumen
that indicate cancer. The scale
bar corresponds to 100 μm
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technique to the application can lead to useful protocols.
While the potential advantages of FTIR imaging for
examining tissue biopsies is high, practical protocols for
clinical deployment are being developed by many groups.

Numerous recent reviews are available to address
biomedical applications of FTIR spectroscopy and imaging
[16–20], especially related to diseases and cancer. These
reviews address instrumentation, the applicability to various

systems, spectroscopic bases and classification algorithms
for decision making, and controversial aspects in the
backdrop of the evolution of the field. The commercial
availability of high-fidelity FTIR imaging instruments,
advances in computers and data analysis algorithms, and
increasing interest have combined to generate an increasing
volume of studies. At the same time, there is considerable
debate emerging on various aspects of the process. Reports
study a variety of organs that may not correlate in behavior,
utilize different sample acquisition and processing tech-
niques, employ different instrumentation, data acquisition,
or handling protocols, and apply a variety of decision-
making algorithms. While this has led to a lively community
of practitioners and exploration of various facets such as
resolution, biological diversity, and chemometric or statis-
tical methods, studies have generally focused on one aspect.
Many excellent studies have developed each of these
aspects to the point of routine use in advanced laboratory.
The focus in the field is now on understanding biochemical
signals and developing protocols from high quality data that
can actually lead to clinical acceptance. We contend that the
development of clinical protocols is necessarily integrative
and, in this manuscript, review first the salient aspects in
developing a practical, integrative approach to spectroscopic
imaging for cancer histopathology. Second, we discuss the
issues of spatial selectivity, sample size calculations,
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Fig. 2 Potential application of FTIR imaging for pathology. The
current paradigm of cancer diagnosis and grading upon biopsy
involves sample processing, staining, and pathologist review (left,
shaded boxes). To implement the paradigm of automated analysis
(right, unshaded boxes), IR chemical imaging is followed by
computer analysis for diagnosis. Since IR imaging is label-free and
non-perturbing, the sample can be stained, providing the pathologist
with both IR chemical and conventional stained images

Fig. 3 Correspondence of conventionally stained and FTIR chemical
images for pathology applications. a Hematoxylin and eosin (H&E)-
stained image of prostate tissue section. Hematoxylin stains negatively
charged nucleic acids (nuclei & ribosomes) blue, while eosin stains
protein-rich regions pink. The diameter of the sample is ca. 500 μm.
Simple univariate plots of specific vibrational modes provides for
enhancement or suppression of specific cell types. b Absorption at

1,080 cm−1 commonly attributed to nucleic acids, highlights nuclei-
rich epithelial cells in the manner of hematoxylin. c Spatial
distribution of a protein-specific peak (ca. 1,245 cm−1 ) highlights
differences in the manner of eosin. The entire spectrum can be
analyzed for a series of markers that provide more information than
H&E or univariate images, as shown in d where specific cells are
color coded based on their spectral features (e)

Anal Bioanal Chem (2007) 389:1155–1169 1157



optimization considerations, and potential improvements in
algorithms that can provide faster results. Tests to determine
performance and limits of accuracy are reported as a
function of experimental parameters. We focus here on
prostate histology as an illustrative test case, but emphasize
that the approach is applicable and similar insight is gained
with other tissues [21]. Further, exciting results have
recently been reported for diagnosis, grading, and classifi-
cation of prostate cancer [22–26], including the effects of
zonal anatomy [27] and cytokinetic activity on spectra [28].
An extension of the methodology here to pathology will
help formulate better protocols and allow a better under-
standing of the performance of classifiers.

Approach and essentials

The promise of chemical imaging for pathology is
illustrated in Fig. 2. Our approach has been to attempt
integration of our developments with current clinical
practice. Hence, we employ tissues that have been biopsied,
fixed, embedded, and sectioned as per usual clinical
protocols. We differ in the de-paraffinization step, suggest-
ing a gentle wash with hexane and do not stain the tissue.
Additionally, as IR chemical imaging only employs benign
light, it is non-perturbing and entirely compatible with all
downstream pathology processes. Hence, the sample may
be stained as usual (Fig. 2, dashed arrow, top). Visual-
izations similar to those observed in conventional pathol-
ogy are possible without staining the tissue. For example,

Fig. 3 correlates H&E and infrared spectral images.
Visualizations similar to H&E images may be “dialed-in”
by utilizing specific spectral features indicative of tissue
chemistry. Although, the IR data only demonstrate univar-
iate representations in the images, automated mathematical
algorithms can determine the cell types and their locations
within the image, while providing quantitative measures of
accuracy and statistical confidence in results [29]. These
data may be employed to directly provide diagnoses or to
inform the pathologist (Fig. 2, dashed arrow, bottom),
helping them make better decisions. Since the results are
images, information exchange between spectroscopists and
clinicians is facilitated. Spectroscopic analyses can poten-
tially be fully automated; thus, no additional users need to
be trained or knowledge base acquired by current clinicians.

A major challenge in the field is the development of
robust algorithms that employ spectral data to provide
histopathologic information. Both supervised and unsuper-
vised approaches have been employed. We believe that
unsupervised methods are more suited to research and
discovery. Supervised methods are preferred when the data
need to be related to known conditions, e.g., clinical
diagnoses. The development of supervised classification
of IR chemical imaging data for histopathology is fairly
straightforward [30]. The process is shown in Fig. 4. First, a
model for classification is selected. The model comprises
all possible outcomes for any pixel in the images and is,
hence, bounded by definition. We term each histologic
constituent of the model a class to denote that it may not
correspond to specific cell types or entities corresponding

Fig. 4 Process for relating path-
ologic or physiologic state to
FTIR chemical imaging data. A
model is chosen for supervised
classification (a). b–d Training
data is reduced in size and
optimized into a prediction
algorithm using gold standard
data. The developed algorithm
is validated against a second,
independent data set and the
accuracy is measured using
three different methods: ROC
curves, confusion matrices, and
image comparisons
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to morphology-based pathology. While this allows for
simplifications and allows the user to focus on specific
cells relevant in disease, it is also likely to prove useful in
the discovery of different chemical entities that appear
morphologically identical.

Next, data from a large number of tissue samples is
recorded. A set of pixels are specifically marked (gold
standard) by different colors to correspond to known
regions of tissue, usually by comparison with an H&E-
stained image or with immunohistochemically stained
images [21]. The recorded data set is reduced to a smaller
set of measures that capture the classification capability of
the entire data set. We termed these measures metrics.
There are numerous means of obtaining the metric data
set: manual selection of large spectral regions, principal
components analysis, genetic algorithms, or a sequential
forward selection algorithm. A numerical algorithm is then
chosen, for example, a linear discriminant analysis, neural
network, SIMCA, or modified Bayesian classifier [31]. The
classifier is optimized iteratively, if needed, to optimally
predict the training data set. Subsequently, the algorithm is
applied to a second data set (independent validation) that
has been independently marked for each class. A compar-
ison of the gold standard marking with the computation-
ally predicted class provides a measure of the accuracy.
We have employed three measures of accuracy: receiver
operating characteristic (ROC) curves [32] that represent
the sensitivity and specificity trade-off of the classifier,
confusion matrices that provide the fraction of pixels of
each class classified as pixels of all classes, and classified
images that can be compared pixel-for-pixel to other
images. Additionally, it is often instructive to drill into the
classifier to obtain the basis for classification or the
distribution of confidence intervals for various samples.
The last two factors are generally not apparent in previous
studies.

There are three key developments that are needed for
this approach to be successful: (a) high-fidelity FTIR
imaging instrumentation, (b) high-throughput sampling,
and (c) robust classification that provides statistically
significant results in a manner that can be appreciated by
non-experts in spectroscopy. We briefly review the three
developments next.

FTIR imaging

Need for spatially resolved data

The need for spatially resolved data has been recognized
[33], but the effect of limited resolution data on classifica-
tion is not entirely clear. The primary complication of
coarse spatial resolution, obviously, arises from boundary

pixels. These can be defined as pixels that are assigned to
one class but would likely yield more classes, to their
physical limits, were finer resolution available. As a
consequence, the spectral content of the boundary pixel is
likely to be mixed and will likely lead to errors in
classification. For example, the confounding contribution
of stromal spectra to cancerous epithelial cells in breast
tissue has been proposed [34]. As the resolution becomes
coarser, the fraction of pixels in an image that belong to
boundary pixels increases. Inclusion of these pixels has
been shown to be a primary contributor to error rates in data
[29], while their exclusion in accounting for accuracy
necessarily implies that not all pixels are included. We
sought to examine the effect of spatial resolution on the
prevalence of boundary pixels.

We binned data acquired at 6.25-μm pixel size from 148
samples in a validation data set (≈7000 pixels/sample) to 10-,
15-, 20-, 30-, and 50-μm pixel sizes. There is an important
distinction between pixel size and spatial resolution. The
pixel size denotes the best possible optical resolution, which
may be limited by longer wavelengths in the spectrum and
optical effects to yield a poorer measured resolution [35–38].
For each dataset, we classified the tissue and determined
neighbors of each pixel that did not belong to the class of
the pixel. Some pixels that have no neighbors of other
classes may still have empty pixels as neighbors. Since
neighboring empty pixels can only provide optical distor-
tion [39] but do not affect spectral content; we do not
consider them further. The number of neighbors for
epithelial pixels for different spatial resolutions may be
seen in Fig. 5. The first observation is that a large majority
of pixels have the same class pixels as all eight neighbors.
The fraction of pixels with all neighbors of the same class

Fig. 5 Neighbors of cell types other than epithelium or empty space
for different spatial resolutions. The inset shows the decrease in
percent epithelial pixels that do not have any other cell types as
neighbors
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decreases rapidly with decreasing resolution and stabilizes
at ca. 20 μm. Hence, a spatial resolution coarser than
20 μm is unlikely to have an effect on the classification but
is expected to lead to about 25% more epithelial pixels
being contaminated compared to 6.25-μm pixel sizes. The
precise effect on a specific sample is very dependent on the
sample morphology and is generally associated weakly
with pathologic state. While in itself, the statistic does not
imply that results from coarser resolution studies will be
invalid, practitioners must recognize that error rates may be
higher and that this contribution may be mitigated by using
commonly available imaging systems.

One danger of classifying mixed composition pixels is
whether they may be classified as an entirely different class
or disregarded from the data set as belonging to no class.
We simulated pixels of composition ranging from 0 to
100% for pairs of each class. We also added noise to
simulate different data acquisition conditions. An example
of the data can be seen in Fig. 6. Average spectra, one each
from the two classes, are baselined and added in ratios
varying linearly from 0 to 100%. Figure 6b demonstrates
the classification of the gradient data set. In general, the
classification works well, favoring the class with higher
concentration. The classifier is also stable at the noise levels
examined. A surprising result is that pixels between
epithelium and fibroblast-rich stroma are classified as
mixed stroma. This drawback, however, is the only
example of two classes mixing to yield an entirely different
one. The reason also stems from the definition of the mixed
stroma class. While the class was designed to handle those

stromal cells that were not clearly fibroblasts or smooth
muscle in origin but appeared mixed, a mix of epithelium and
fibroblast-type stroma also leads to the classification as mixed
stroma. Noise seems to have little effect on this behavior.

The full simulation of all classes (not shown) reveals that
mixed pixels generally can be classified as the constituent
classes with the higher concentration. Clearly, boundary
pixels at epithelial fibroblast-rich regions must be handled
with care. The increase in boundary pixels at lower
resolution also implies that this type of systematic mis-
assignment may arise more frequently. The rate of
occurrence of boundary pixels may be even lower for
synchrotron-based imaging that is conducted at higher pixel
density or in emerging approaches that utilize synchrotron-
based interferometers and array detectors. The simulated
example above, however, demonstrates that simply over-
sampling a spatial region to increase pixel density may
allow for better definition of the interface and assignment
of pixels, though it will not address spectral purity. Hence,
for analyses based on spectral discrimination, mixture
models will have to be developed based on entire spectra.
For example, multivariate curve resolution techniques hold
promise.

A further complication arises in using data from his-
tologic classification for pathologic diagnoses. For exam-
ple, the boundary epithelial pixels classified above may
disproportionately contribute to classification errors. We
have found evidence for the same in studies for both cancer
pathology and for histology in tissue from different organs.
For example, the boundary pixels in benign tissue get
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Fig. 6 Mixture models and
classification for prostate histol-
ogy. a Absorbance at
1,080 cm−1 for three classes and
their mixtures. The first column
contains mixtures of epithelial
cell spectra with the average
spectrum from fibroblast-rich
stroma and mixed stroma.
The second and third columns
contain mixtures with fibroblast-
rich and mixed stroma, respec-
tively. The concentration
changes from 0 to 100% linearly
along the y-direction as indicat-
ed by the color bar in c. b
Along the x-axis of the com-
posite image, the noise in each
cell increases linearly. Error
bars are standard deviations of
noise in the spectra. c Classified
image for the data, demonstrat-
ing the effect of composition
and noise on classification. d
Probability profiles of the three
cell types at columns 1 and 25,
demonstrating the effect of noise
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misclassified as cancerous, leading to the major source of
error in applying this approach to pathology. At this time,
the evidence is anecdotal and needs further investigation to
quantify the extent of the error and its mitigation by
advanced numerical processing. The last interesting aspect
of lower spatial resolution is that it tends to over-predict
certain classes. For example, Table 1 demonstrates the
regression results of each samples composition against that
obtained at 6.25 μm for three classes. While the regression
coefficient is high, it is clear that epithelial and mixed
stroma fractions are overestimated and fibroblast-rich
stroma is underestimated with decreasing pixel size. There
are differences based on underlying pathology. For exam-
ple, normal epithelium is generally encountered in 10- to
40-μm-wide strips, while high grade tumor may be
hundreds of micrometers to millimeters in size. Individual
sample variability reflected in the regression coefficient
decreases with increasing pixel size. In spectroscopic
models to predict diseases that include morphological units
but are based on average spectra, mixed pixels may lead to
estimates with large errors. For example, a 1:1 mixed region
of epithelial and fibroblast pixels at 6.25-μm pixel size
increases to ca. 1.19:1 for 50-μm pixel size. Hence, the use of
histologic mixture models at limited spatial resolution may
not be estimated correctly, providing evidence that the
percentage content of cell types in a limited field of view is
likely to be a less robust measure of tissue histopathology.

Evolution and capabilities of current instrumentation

To overcome confounding by mixing, as discussed above,
microscopectroscopy was proposed as an alternative [40].
Single spectra (non-FTIR) have been recorded from
microscopic samples for over 50 years [41] by restricting
light incident on the sample through an aperture. More than
one point, however, is required for tissue analysis. Hence,
sequentially rastering the point at which spectra are
recorded, termed mapping or point microscopy, was
proposed [42]. A practical instrument obtained by coupling
an interferometer, a microscope, and automated stage in the

late 1980s [43] helped in numerous materials science [44],
forensic [45], and biomedical [46, 47] studies. Unfortu-
nately, the mapping approach has a number of drawbacks in
realizing the goal of an FTIR microscopy analog to optical
microscopy [48].

More than 85% of cancer arises in epithelial cells, which
often form surface layers that are 10- to 100-μm wide. As
we demonstrated in the previous section, however, a
resolution higher than ca. 10×10 μm is preferable.
Consequently, the illuminated spot at the sample has to be
made smaller, throughput decreases proportionally, which
in turn decreases the signal to noise ratio (SNR) of acquired
spectra. Orders of magnitude brighter sources, e.g., syn-
chrotrons, may be employed to recover the lost SNR.
Unfortunately, synchrotron or free electron lasers [49] are
prohibitively expensive and no laboratory lasers exist for
the wide spectral region. An alternative is to average
successive measurements (co-adding) to increase statisti-
cally the SNR. Since the SNR increases only as the square
root of the number of averaged spectra, long averaging
periods are required. The situation may be mitigated by
using higher condensing optics, sources at higher temper-
atures, slightly faster scanning than used here,1 gain
ranging [50], or ultra-sensitive detectors [51]. Even if a
hypothetical instrument with all these advances were
constructed, ca. 10- to 20-fold reduction in time would be
obtained. Furthermore, this calculation underestimates the
time required by not considering losses due to diffraction or
stage movement.

In prostate tissue, for example, the situation is similar to
Fig. 1. Epithelial cells form 10- to 35-μm-wide foci around
the cross-sections of ducts. Ducts appear as white circles in
Fig. 1b, surrounded by epithelial cells that are depicted in
blue. To analyze this morphology, aperture dimensions of
ca. 6 μm×6 μm (≈ cell size) are proposed [31]; for this
case, the mapping approach would require ca. 1,028 h for a

1 There is no advantage to faster scanning once the modulation
frequency has reached optimum level for MCT detectors (1 MHz).
The reduced time to observe signal then decreases the SNR.

Table 1 Correlation of composition for samples between 6.25-mm pixel sizes and other pixel sizes

Pixel size (micron) Epithelium Fibroblast-rich stroma Mixed stroma

10 0.9913x(0.9976) 0.9847x(0.9923) 1.0300x(0.9957)
20 1.0156x(0.9906) 0.9671x(0.9775) 1.0473x(0.9787)
25 1.0404x(0.9896) 0.9768x(0.9624) 1.0262x(0.9617)
30 1.0720x(0.9773) 0.9683x(0.9507) 1.0175x(0.9363)
50 1.1180x(0.9459) 0.9410x(0.8947) 1.0390x(0.8723)

The first row in each cell denotes the composition factor for that pixel size and class. For example, for every 100 μm2 , the area of epithelial pixels
at 10-μm pixel size is 99.13% of that at 6.25-μm pixel size. Increasing/decreasing numbers represent pixels being increasingly/decreasingly
classified as that class. The ratios are not uniform for every sample and the regression coefficient of the best fit line passing through the origin is
provided in the second row of the each table cell. Increasing pixel sizes reflect greater variance from the fit line
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500 μm×500 μm sample [31]. Hence, mapping is not a
viable option. In contrast to point mapping using apertures,
large fields of view are measured in FTIR imaging.
Contributions from different sample areas in imaging are
separated by an array of mid-IR-sensitive detection ele-
ments in the manner of imaging with CCD devices for
optical microscopy. By coupling the multichannel detection
of focal plane array (FPA) detectors with the spectral
multiplexing advantage of interferometry, an entire sample
field of view is spectroscopically imaged in a single
interferometer scan [52]. Depending on the microscopy
configuration, thousands of moderate resolution spectra can
be acquired at near-diffraction-limited spatial resolution in
minutes [53, 54]. The time advantage over mapping is
nominally the number of pixels in the FPA (16- to 65,000-
fold) but the noise characteristics of FPAs are poorer than
sensitive single point detectors [55]. Hence, the SNR-
normalized advantage is lower [56]. Faster detectors are
being used for imaging and promise significantly higher
SNR in the same time. For example, we have employed a
128×128 element MCT array operating at ca. 16 kHz to
acquire a full data set in ca. 0.07 s [unpublished]. These
rates of data acquisition are approximately a factor of 10
higher than commercially available, but are required for
practical data acquisition times. Increase in data acquisition
speed remains a bottleneck for applications of IR imaging
to routine clinical studies. Coupled with the complexity and
cost of instrumentation, present technology provides pre-
liminary capability but is likely to prove a barrier to
practical clinical translation.

High-throughput sampling and statistical pitfalls

Quantitative analyses of results

The best imaging instruments (which employ sensitive
detectors and a small multichannel advantage) can acquire
data in about 0.1% of the time required for mapping for
equivalent parameters. Hence, point mapping studies in
pathology typically exceed numbers in only one of these
categories: spatial resolution (ca. 15–20 μm), numbers of
patients (ca. 50) or recorded small numbers of spectra per
patient (ca. 100). These numbers may typically be improved
an order of magnitude with imaging. For example, a recent
report analyzed ca. ten million spectra from ca. 1,000
samples at a spatial resolution of 6.25 μm [26]. This
quantitative validation is necessary for any automated
biomarker approach (vide infra) [57]. Studies are underway
in our and other laboratories to correlate spectral patterns
with other physiologic and pathologic conditions; recent
published studies verify the robustness and potentially wide
applicability of FTIR microscopy [58, 59].

Sample size

Though these studies demonstrate potential, [60, 61]
considerable debate exists on reproducibility and accuracy
measures for larger studies [29]. The first response of many
practitioners to new data is a question of validity based in
limited statistical confidence. A detailed understanding is
emerging from the work of several groups regarding
appropriate sample control [62] and confounding factors
due to biology [63]. Inherent differences between patient
cohorts, effects of sample preparations and measurement
noise are topics that can be addressed with the available
imaging technology but are yet to be fully explored. Hence,
validating robust spectral markers for large sample pop-
ulations [64, 65] is exceptionally challenging and the
chance for chance and bias influencing results exists.

Most importantly, the fundamental question of sample
size required has remained open. There are two major
concerns: first, the optimal sample size in forming calibra-
tion sets and a prediction algorithm. Second, investigators
must determine whether the results shown can be supported
by statistical considerations. While the first problem is
essentially one of optimizing a model and prediction
algorithm, the second impacts the quality of results and
claims of applicability directly. In this manuscript, we
examine only the second aspect. Determining the optimal
sample size to form robust models is a more involved
problem and is discussed elsewhere. The statistical validity
of obtained results and dependence on data acquisition
parameters are discussed later in this manuscript. Specifi-
cally, we estimate sample size based on the standard error
for the area under the curve for an ROC curve.

Gold standard

The selection of pixels as gold standards needs great care. It
must be done independently of any classifier training or
validation, thus ensuring a blinded study design. Once the
gold standard set is determined, it must not be changed.
This will ensure that there is no bias in the process. Care
must be taken to avoid pixels that do not lie on the tissue or
those that are at the boundary as these may artificially
inflate the error. The use of all pixels in an image has been
suggested and their exclusion has been proposed to
contribute selection bias. Selection bias, however, does
not arise in pixels that are chosen independent of validation
algorithms. The exclusion of boundary pixels is necessary
in both training (to avoid spurious probability distribution
functions) and validation (to prevent introduction of errors).
There are major technological difficulties in relating stained
visible to IR images from unstained tissue due to changes
during staining, leading to errors. Hence, it has been
proposed that the exclusion of boundary pixels in akin to
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the performance of a classifier with a reject option for the
boundary.

Sampling, archiving, and consistency

While it is unclear what an optimal sample size would be, it
is clear that a large number of tissue samples are needed for
effective validation. While it may theoretically be possible
to train on a single sample, validation of a protocol is
required on more samples. We recognized that one does not
need to observe the full surgically resected tumor for
validating IR protocols, but would need a representative
small section. Hence, we employed tissue microarrays
(TMAs) [66] as a platform for high-throughput sampling.
TMAs consist of a large number of small tissue samples
arranged in a grid and deposited on the same substrate.
They are typically manufactured by embedding cylindrical
cores in a receiving block and sectioning the block
perpendicular to the long axis of the core. Thin sections
are then floated on to a rigid substrate for analysis. The
technique facilitates rapid visualization of results of any
classification protocol, while revealing localization and
prevalence of any errors. Sample processing times may
easily be increased 100-fold, valuable tissues are optimally
utilized, and consecutive TMA sections can be used to
correlate with staining results. Construction and analysis of
TMAs has been automated, further increasing the through-
put. For spectroscopists, TMAs provide a ready source of
tissue to test hypothesis and develop prediction models.

The validity of employing TMAs for prostate cancer
research and, especially, for cancer grading has been
addressed by a number of authors [67]. For example, a
study of genitourinary pathologists [4] with images from
TMA cores assesses that ca. 90% considered this approach
useful for resident training and for pathology teaching.
Further, Gleason score was easily assigned to each TMA
spot of a 0.6-mm-diameter prostate cancer sample. Hence,
the utility of TMAs is not only in providing numerous
samples in a compact manner for the advantages above,
but also in consistency of the diagnoses and precision in
analyzing similar areas. Virtual tissue microarrays could
be constructed from different areas of large samples, thus
providing many sub-samples for within-patient and among-
patient comparisons. This approach has not yet been re-
ported but is likely a useful extension of the TMA concept.

Prediction algorithms and high-throughput data
analysis

Univariate algorithms

The major technological advances of fast FTIR microscopy
and high-throughput tissue sampling have been addressed

by imaging and TMAs respectively. There is still some
confusion and widespread disagreement, however, about
the “best” approach to extract histopathologic information
from FTIR imaging data. Several early manuscripts employ
univariate correlations to disease states [68]. While the
results were exciting, it is now realized that they were
statistically flawed and did not necessarily contain a
fundamental basis in cancer biology. To our knowledge,
there is no manuscript that has expressly demonstrated,
using statistics arguments, why univariate analyses are
likely to fail. There is widespread consensus and anecdotal
evidence, however, among practitioners that argues against
the approach. Consider the distributions for a univariate
measure (absorbance at 1,080 cm−1 that is normalized to
the amide I peak height) for benign and malignant cases as
shown in Fig. 7.

The normalized histograms reveal that for specific,
single samples the distribution of absorbance at pixels is
such that it clearly indicates the metric to be a good one for
cancer discrimination. When the distribution from all
samples is considered, however, there is little difference in
the distributions. Hence, many univariate measures de-
scribed in the literature do not hold up in wide population
testing. A TMA-based, high-throughput validation can
easily prove that the measure is not a good one but does
discriminate some samples. In Fig. 7, a cutoff value can
generally be found that distinguishes disease, leading to the
erroneous conclusion that the feature is universally indic-
ative of disease state. Since a typical infrared spectrum has
numerous frequencies and even non-chemically specific
features that can provide discrimination, a small number of
samples increases the probability of finding such discrim-
ination by chance alone. Univariate measures that appar-
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ently provide discrimination when none exists can be
equated to the false discovery rate (FDR) [69] of metrics.
The FDR is very different from the p-value for determining
that a metric separates two distributions; a much higher
FDR can be tolerated than can a p-value. Similarly, a false
negative rate has been proposed [70], which is not critical
for our case as we have observed high accuracy without use
of any erroneously left out metrics. While detailed cal-
culations and their underlying concepts are too lengthy to
reproduce here, for the sake of completeness, it suffices to
say that for the expected number of metrics demonstrating
discrimination, the FDR tends to zero for larger than ca.
30 samples. While correlations due to chance can be min-
imized by this approach, there is potential for unknown
bias or error in prediction for small numbers of samples.
Hence the algorithm must be integrated with sampling
considerations.

Multivariate algorithms

It was argued in the previous section that univariate
analysis may not provide a good measure of the population
distribution. It can alternatively be argued that the individ-
ual differences in univariate measures are masked if
population measures of the same are employed. Similarly,
multivariate techniques may mask the individual measures
in population testing. Hence, our philosophy has been to
employ a multivariate, supervised classification in which
the metrics are derived from univariate analyses. This
enables us to carefully examine each metric for both
population as well as individual sample relevance. While
unsupervised clustering approaches provide good insight
into spectral similarity, a supervised method forces a
relation to common clinical knowledge. For example, as
shown in Fig. 4 for prostate tissue, we consider a ten-class
model to determine histology. The drawback is that the
sensitivity of the approach to individual samples is lost at
the expense of generality. One could potentially combine
clustering and supervised classification. Clustering infor-
mation on the training data set would emphasize individual
sample distributions, which would allow for supervised
classification tailored to each cluster type. Such an
approach has not been implemented yet but is being
attempted in our laboratories to classify samples optimally.

Dimensionality reduction

It is well recognized that the spectrum at each pixel needs
to be reduced to a smaller set of useful descriptors that
capture the essential information inherent in the spectrum.
The reduction of full spectral information to essential
measures helps eliminate from consideration those spectral
features that have no information (non-absorbing frequen-

cies), little biochemical significance (e.g., apparent absorp-
tion at non-chemically specific frequencies), inconsistent
measures that may degrade classification, and those with
redundant information. The number of useful measures is
significantly smaller than the number spectral resolution
elements and, hence, the process is also termed dimension-
ality reduction. Dimensionality reduction and further
refinement (vide infra) also helps reduce the incidence of
prediction by chance alone, reduce computation time and
storage requirements. Potential measures of a spectrum’s
useful features are termed metrics and are defined manually
in our scheme.

It may be argued that the metrics are not selected in an
objective manner due to a human performing this task and
some computer routines must be employed. While the use
of an automated computer program is most certainly
objective and reproducible, the algorithm that drives such
programs is generated from spectroscopy knowledge. A
well-trained spectroscopist can recognize spectral features
and assign them to appropriate their biochemical basis.
While a computer algorithm may be able to enhance subtle
features in the spectrum, automated peak-picking algo-
rithms run the risk of substantial error as they are based on
some very specific criteria that may not be universally
valid. We believe that computer algorithms are more suited
to finding correlations and patterns that a human cannot for
the sheer size and complexity of data. Hence, the process of
determining which spectral features to consider is entirely
manual in our approach. It must be emphasized that the
universal set of metrics is selected manually but that the
data reduction step to a set of metrics to be used in
algorithms is entirely based on objective algorithms.
Manual refinement of metrics for classification is, obvious-
ly, not recommended for possibilities of overlooking
specific features, biasing the selection to specific feature
sets, or in determining the optimal set of metrics for a
classifier. Dimensionality reduction is also intimately linked
to the data quality and classification algorithm employed.

Classification algorithm

A number of supervised algorithms have been applied to
dimensionally reduced data, including those based on linear
discriminant analysis, neural networks, decision trees, and
modified Bayesian Classifiers. An intermediate step in
some of these algorithms provides for a fuzzy result in
which every pixel has a probability of belonging to every
class. For example, in our approach, each pixel can have a
probability (between zero and one) of belonging to each
class. A discriminant function then assigns each pixel to a
class based on a decision rule. The pre-discriminant data
set, termed rule imaging set, contains important informa-
tion. In our algorithm, it is a direct measure of the
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probability of the pixel belonging to the class. Hence, the
probability value may be used to compare the potential of
two protocols to distinguish a cell type or to quantify
confidence in results for tissue classified by different
methods.

Measures of accuracy and optimization

We prefer the use of the AUC for both optimizing
algorithms and for validating results. Confidence in the
value of the AUC, hence, is the primary test for the valid-
ity of developed algorithms and is characterized by the
standard error of the value. For example, in validating the
discrimination of epithelial from stromal pixels in a blinded
validation set, the cumulative distribution of AUC in a
TMA is shown in Fig. 8. More than 20% of the spots had
an AUC >95% and no AUC value below 0.8 was recorded.
One drawback of using ROC curves and AUC values is that
the results are valid for one at a time classification. Hence,
we have analyzed here the segmentation of epithelium from
all other cell types. The tissue is classified into ten classes
as before but the results are lumped into epithelial and non-
epithelial pixels. Further, not all TMA cores have all types
of cells. Hence, the two-class model also allows us to
examine a large number of samples. Last, we excluded
cores that did not contain at least 100 pixels of each class to
leave 103 cores for the analysis.

Quantitative measures of performance and accuracy are
perhaps the weakest portion of reports using IR spectros-
copy for cancer pathology. Typically, sensitivity and spec-
ificity have been employed as summary measures. While
these are indeed very relevant, we demonstrate that they are
insufficient and classification analysis must utilize more
measures to understand the process. Specifically, the use of

receiver operating characteristic (ROC) curves [71] is an
excellent direction. The area under the ROC curve is a
further summary measure that provides both a quantitative
understanding of the discrimination potential of the model
and a convenient measure to compare multiple classifica-
tion models. The third tool we introduced was the
confusion matrix. While ROC curves provide the potential
for correct classification of a binary rule at a time, con-
fusion matrices correspond to a particular point on the
ROC curve under the constraints of accuracy measures of
other classes. These also directly correspond to the final
segmentation of the rule image under an optimization
condition. The optimization condition may simply be the
maximization of the accuracy or may be the minimization
of certain types of errors.

Discriminant and class assignment

In a multi-class analysis, our approach to evaluating ROC
curves for a class is one at a time, i.e., all other classes are
essentially lumped in the rule data and the highest
probability of the lumped ensemble is compared to the
class whose ROC curve is being built. Hence, the AUC
values must be regarded as a potential for classification.
They are best suited to answer the binary question of
whether a pixel is correctly identified or not when
considering a single class. This method is ideally suited to
a cascaded classifier one at a time. Such a classifier has not
been reported yet but would provide a means to explicitly
determine the error for any given classification scheme.

Experimental parameters and classification

Here, we take advantage of the trading rules of FTIR
spectroscopy and imaging to model the effects of the
experimental parameters on the classification process.
While the signal to noise ratio (SNR) and resolution are
generally arbitrarily fixed in most studies, we demonstrate
their importance in classification.

Effect of signal to noise ratio

There are two issues: what is the “best” SNR to formulate
algorithms and second, provided an algorithm, what is the
least SNR that would provide adequate classification. Only
the latter issue is examined here. As with conventional
FTIR spectrometers, imaging spectrometers obey the
trading rules of IR spectroscopy. Hence, if an n-fold
reduction in SNR provides the same results, data acquisi-
tion will be n2-fold faster. Thus, in addition to an interesting
fundamental behavior of the classifier, the role of SNR has
a direct bearing on the speed at which data is acquired.
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We examined classification accuracy as a function of
average spectral noise. To strictly examine the effect of
noise, data must be acquired at different co-added spectral
numbers. The time required for imaging an array multiple
times, however, is prohibitive. Hence, we computationally
added random, Gaussian noise to the original spectral data.
Peak-to-peak and root mean square (rms) noise were
measured in the 1,950- to 2,150-cm−1 region adjacent to
the amide I peak.2 Representative single pixel spectra from
the data sets are shown, as a function of noise, in Fig. 9a.
We additionally plotted the observed noise levels against
the added noise to verify linearity (plot not shown). The
linear relationship conforms to the expected result and
provides a scaling factor to express the equivalent reduction
in data acquisition time (co-addition) that would be realized
at that noise level. For example, the addition of 0.005 a.u.
of noise raises the peak-to-peak noise from 0.0013 to
0.015 a.u., corresponding to a decrease in data acquisition
time by a factor of ca. 100 for this data set. In addition to
increasing noise, we employed an algorithm based on an
MNF transform [72, 73] to mathematically eliminate noise.
The observed peak-to-peak noise was 0.00017 a.u.,
corresponding to an increase in data acquisition time by a
factor greater than ca. 100. Hence, the data examined span
about 5 orders in magnitude of collection time.

The average height of the amide I peak was 0.42 a.u. in
all cases, providing a SNR of 2,500 (MNF-corrected data)
to 1.5 for the data sets. Accuracy as a function of the noise
level is shown in Fig. 9b. While the x-error bars indicate the
standard deviation of noise levels in pixels, the y-error bars
indicate the standard deviation in AUC values of all ten

classes. As a general rule, the classification improves with
lower noise levels. We first note that the classification does
not become perfect for any noise level and there is a
significantly diminishing return in increasing the SNR
beyond a level. At the other end, the ability to distinguish
classes is entirely lost at levels of ca. 0.1. Performance
across multiple data sets observed using our prediction
model indicates that the increases demonstrated at noise
levels lower than ca. 0.003 a.u. are within the variance.
Hence, there is little benefit to decreasing the noise levels
below ca. 0.003 a.u. for this data set, or to increasing the
SNR beyond ca. 150. It must be emphasized that the model,
prediction algorithm, and discriminant function are inti-
mately linked in a non-linear manner. While this makes it
impossible to predict the behavior generally of all classifi-
cation approaches, this simple exercise may be conducted
to determine the optimal data acquisition parameters. For
our selected metrics and model, it appears that the data
acquisition time can be decreased by a factor of ca. 3
without significant degradation in accuracy.

Spectral resolution

We next examined the effect of spectral resolution on the
results that would be obtained using the developed
algorithm. As in the previous section, the data were not
re-acquired but were downsampled from acquired data
using a neighbor binning procedure. Spectra from the same
epithelial class pixel, at different resolutions (Fig. 10a),
demonstrate the effect of downsampling on feature defini-
tion. Figure 10b demonstrates, first, that the peak-to-peak
noise levels over the region remain the same with spectral
resolution. As previously observed, noise is an important
control in comparing spectra; the peak-to-peak noise over
the same number of data points was preserved by neighbor
binning. In practice, the constant-throughput spectrometer
would provide a SNR (or noise level, in this case) that
decreases linearly with resolution. Since most array
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2 It is noteworthy that we are examining trends in the absorbance
spectra. Strictly, SNR should be measured in single beam spectra to
relate rigorously to theory. It can be shown, however, that the trend
will hold approximately for the absorbance spectra as well. Many
practitioners advocate the use of rms SNR. We are employing peak-to-
peak fluctuations over the same spectral range. Hence, the noise
values we obtain will be higher but will follow the same trend.
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detectors can be operated with higher integration times, it is
fair to assume that the time advantage in decreasing
resolution would be linear. Second, the performance of the
classifier is very nearly the same for finer spectral resolutions
and degrades only significantly for 32 cm−1. While the
results may appear to be surprising, a closer analysis of the
basis of the algorithms provides insight into the trends.

The classifier is based on absorbance and center of
gravity measures of the peaks. It is well established that
absorbance is measured accurately, provided that the
FWHH of the peak is not significantly smaller than the
resolution. The Ramsay resolution parameter, σ, is a useful
measure that was originally developed for monochromators
but has been shown to be applicable to FTIR spectrometers
as well [74]. While most bands are broad and peak
absorbance lower than ca. 0.7, absorbance values are not
expected to be adversely impacted from the measurement
process. With decreasing resolution, however, broadening
within complex peaks shapes may lead to observed changes
in the apparent absorption at a specific wavenumber. The
change itself may not have a significant influence on the
classifier performance as it depends on several such
metrics. A second type of metric calculates the area under
the curve. This is not expected to be impacted significantly
for most peaks. The third type of metric we have used is the
center of gravity of a spectral region. While spectral
analyses ordinarily attempt to locate the peak position and
use it as a metric, we chose the center of gravity for its
sensitivity to both position and asymmetrical shape changes
in complex spectral envelopes observed in biological
samples. Since the classifier is based on center of gravity
of a feature and not on the wavenumber of the peak
maximum, it is a very robust measure that is relatively
unaffected by spectral resolution or noise.

Generalization of developed algorithms to instruments
and practical approaches

The characterization of classification with regard to
spectrometer performance (SNR) and spectral resolution

provides information to optimize parameters on one spec-
trometer. It is unclear, however, if the calibration would
transfer to another spectrometer. We contend that the
potential for a successful transfer is high as the classifica-
tion process is relatively insensitive to resolution, implying
that it would only be weakly sensitive to apodization or to
small inaccuracies in wavelength scale. Similarly, if the
SNR of acquired data is used as control, perturbations due
to fixed pattern noise in focal plane array detectors or the
different use of electronic filters by different manufacturers
is likely to be insignificant in classifying tissue correctly.
Various instrument manufacturers also set the nominal
optical resolution differently in their instruments. The issue
of spatial resolution, of course, is more complex. Never-
theless, any resolution setting around the wavelength-
limited case will likely provide consistent results. To our
knowledge, there has been no comparison yet of classifier
performance across mid-IR FTIR imaging spectrometers
using algorithms developed on one specific instrument. The
developed protocol provides for such a framework and
detailed results are awaited from on-going work [75].

Outlook and prospects

An exciting period in imaging tissues spectroscopically
with low power, optical microscopy-comparable resolution
is emerging. Considerable work, however, needs to be
accomplished before this idea can become a clinical reality.
An ultimate goal of such studies is to provide a key
technology for emerging molecular pathology. The ap-
proach promises greatly reduced error rates, automation,
and economic benefits in current pathology practice. Look-
ing to the future, chemical imaging approaches will be
employed for diagnosing cancers in pre-malignant stages
prior to their apparent changes observable by conventional
means, predicting the prognosis of the lesion and intra-
operative imaging in real-time. Fundamental studies in drug
discovery and mechanisms of molecular interactions are
further examples that would be enabled by progress in this
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area. Doubtless, exciting applications lie ahead and prog-
ress is rapidly being made towards practical applications
but much work needs to be done to carefully apply this
powerful technology to multiple aspects of pathology.
Success in this endeavor promises to change the practice
of pathology radically and alter the clinical management of
cancer patients.
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Abstract Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US

men and is a leading cause of cancer-related death. Advances in Fourier transform infrared

spectroscopic imaging now provide very large data sets describing both the structural and

local chemical properties of cells within prostate tissue. Uniting spectroscopic imaging data

and computer-aided diagnoses (CADx), our long term goal is to provide a new approach to

pathology by automating the recognition of cancer in complex tissue. The first step toward the

creation of such CADx tools requires mechanisms for automatically learning to classify tissue

types—a key step on the diagnosis process. Here we demonstrate that genetics-based machine

learning (GBML) can be used to approach such a problem. However, to efficiently analyze

this problem there is a need to develop efficient and scalable GBML implementations that are

able to process very large data sets. In this paper, we propose and validate an efficient GBML

technique—NAX—based on an incremental genetics-based rule learner. NAX exploits mas-

sive parallelisms via the message passing interface (MPI) and efficient rule-matching using

hardware-implemented operations. Results demonstrate that NAX is capable of performing

prostate tissue classification efficiently, making a compelling case for using GBML

implementations as efficient and powerful tools for biomedical image processing.
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1 Introduction

Pathologist opinion of structures in stained tissue is the definitive diagnosis for almost all

cancers and provides critical input for therapy. In particular, prostate cancer accounts for

one-third of noncutaneous cancers diagnosed in US men. Hence, it is, appropriately, the

subject of heightened public awareness and widespread screening. If prostate-specific

antigen (PSA) or digital rectal screens are abnormal, a biopsy is needed to definitively

detect or rule out cancer. Pathologic status of biopsied tissue not only forms the definitive

diagnosis but constitutes an important cornerstone of therapy and prognosis. There is,

however, a need to add useful information to diagnoses and to introduce new technologies

that allow economical cancer detection to focus limited healthcare resources. In pathology

practice, widespread screening results in a large workload of biopsied men, in turn, placing

a increasing demand on services. Operator fatigue is well documented and guidelines limit

the workload and rate of examination of samples by a single operator. Importantly, newly

detected cancers are increasingly moderate grade tumors in which pathologist opinion

variation complicates decision-making.

For the reasons above, there is an urgent need for automated and objective pathology

tools. We have sought to address these requirements through novel Fourier transform

infrared (FTIR) spectroscopy-based, computer-aided diagnoses for prostate cancer and

develop the required microscopy and software tools to enable its application. FTIR

spectroscopic imaging is a new technique that combines the spatial specificity of optical

microscopy and the biochemical content of spectroscopy. As opposed to thermal infrared

imaging, FTIR imaging measures the absorption properties of tissue through a spectrum

consisting of (typically) 1024–2048 wavelength elements per pixel. Since IR spectra reflect

the molecular composition of the tissue, image contrast arises from differences in

endogenous chemical species. As opposed to visible microscopy of stained tissue that

requires a human eye to detect changes, numerical computation is required to extract

information from IR spectra of unstained tissue. Extracted information, based on a com-

puter algorithm, is inherently objective and automated (Lattouf and Saad 2002; Fernandez

et al. 2005; Levin and Bhargava 2005; Bhargava et al. 2006).

Uniting spectroscopic imaging data and computer-aided diagnoses (CADx), we seek to

provide a new approach to pathology by automating the recognition of cancer in complex

tissue. This is an exciting paradigm in which disease diagnoses are objective and repro-

ducible; yet do not require any specialized reagents or human intervention. The first step

toward the creation of such CADx tools requires mechanisms for reliable and automated

tissue type classification. In this paper we demonstrate how genetics-based machine

learning tools can achieve such a goal. Interpretability of the learned models and efficient

processing of very large data sets have lead us to rule-based models—easy to interpret—

and genetics-based machine learning—inherent massively parallel methods with the

required scalability properties to address very large data sets. We present the method and

the efficiency enhancement techniques proposed to address automated tissues classifica-

tion. When pushed beyond the relatively small problems traditionally used to test such

methods, an need for efficient and scalable implementations becomes a key research topic
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that needs to be addressed. We designed the proposed a technique with such constraints in

mind. A modified version of an incremental genetics-based rule learner that exploits

massive parallelisms—via the message passing interface (MPI)—and efficient rule-

matching using hardware-oriented operations. We name this system NAX: NAX is compared

to traditional and genetics-based machine learning techniques on an array of publicly

available data sets. We also report the initial results achieved using the proposed technique

when classifying prostate tissue.

The remainder of the paper is structured as follows. We present an overview of the

problem addressed in Sect. 2, paying special attention to tissue classification. We discuss in

Sect. 3 the hurdles that traditional genetics-based machine learning implementations face

when applied to very large data sets. Section 4 presents our solution to those hurdles. We

also describe the incremental rule learner proposed for tissue classification. Last, we

summarize results on publicly-available data sets and the preliminary results for tissue

classification on a prostate tissue microarray in Sect. 5. Finally, in Sect. 6, we present

conclusions and further work.

2 Biomedical imaging and data mining

This section presents an overview of the problem addressed in this paper. We first intro-

duce infrared spectroscopic imaging as a potentially powerful tool for cancer diagnosis and

prognosis. Then, we explore the protocols that provide raw high-quality data that for data

mining. Finally, we conclude by focusing on the key task, tissue classification, by focusing

on prostate tissue.

2.1 Infrared spectroscopy and imaging for cancer diagnosis and prognosis

Infrared spectroscopy is a well-established molecular technique and is widely used in

chemical analyses. The fundamental principle governing the response of any material is

that the vibrational modes of molecules are resonant in energy with photons in the mid-

infrared region (2–14 mm) of the electromagnetic spectrum. Hence, when photons of

energy that are resonant with the material’s molecular composition are incident, a number

are absorbed. The number absorbed is directly proportion to the number of chemical

species that are excited. Hence, any material has a characteristic frequency-dependent

absorption profile called a spectrum. An infrared spectrum is often termed the ‘‘optical

fingerprint’’ of a material as it can help uniquely identify molecular composition—see

Fig. 1.

Researchers, including us, have contributed to develop an imaging version of spec-

troscopy that is essentially similar to an optical microscope. In this mode of spectroscopy,

images are acquired in the manner of optical microscopy with one important difference.

Instead of measuring the intensity of three colors for a visible image, several thousand

intensity values are acquired at each pixel in the image as a function of wavelength

(spectrum at each pixel). The resulting data set is three dimensional (2 spatial and 1

spectral indices) consisting typically of a size 256 · 256 · 1024, but extending to sizes

such as 3500 · 3500 · 2048. Since each data point is stored as a 16-bit number, the

data size typically runs into several tens to hundreds of gigabytes.
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2.2 Mining the spectra: Two sequential problems

Though the continued development of fast FTIR microspectroscopy represents an exciting

opportunity for pathology, handling the resultant data and rapidly providing classifications

remains a critical challenge. First, the sheer volume of data—potentially larger than 10 GB

a day—represents an organizational and retrieval challenge. Next, extraction of useful

information in short time periods requires the formulation of optimal protocols. Third, the

automated cancer segmentation problem is very complex and offers a number of routes and

levels of data that need to be analyzed to determine the optimal approach for application in

a laboratory.

The typical application is the need to extract information from the data set such that it is

clinically relevant. Hence, the output of the data mining algorithm to be developed is well-

bounded and clearly defined. For example, in the prostate there are two levels of interest. In

the first level, the pathologist examines the tissue to determine if there are any epithelial

cells. Since more than 95% of prostate cancers arise in epithelial cells, transformations in

this class of cells forms the diagnostic basis and a primary determinant of therapy. Other

cell types of interest are lymphocytes that may indicate inflammation, blood vessel density

that may indicate the development of new blood supply indicative of cancer growth and

nerves that may be invaded by cancer cells. Hence, any automated approach to pathology

must first identify cell types accurately. The second step in pathology follows. Once

Fig. 1 Conventional staining and automated recognition by chemical imaging. (A) Typical H&E stained
sample, in which structures are deduced from experience by a human. Highlights of specific regions in the
manner of H&E is possible using FTIR imaging without stains. (B) Absorption at 1080 cm–1 commonly
attributed to nucleic acids and (C) to proteins of the stroma. The data obtained is 3 dimensional (D) from
which spectra (E) or images at specific spectral features may be plotted
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epithelial cells are located, their spatial patterns are indicative of disease states. In our

imaging approach, we can identify both spatial patterns as well as chemical patterns in

epithelial cells. Hence, the task would be to use either or both to classify disease. In this

paper, we focus only on the accurate identification/classification of tissue types as the first

step of the path that leads to obtaining the correct pixels of epithelium.

2.3 Tissue classification for prostate arrays

Prostate tissue is structurally complex, consisting primarily of glandular ducts lined by

epithelial cells and supported by heterogeneous stroma. This tissue also contains blood

vessels, blood, nerves, ganglion cells, lymphocytes and stones (which are comprised of

luminal secretions of cellular debris) that organize into structure measuring from tens to

hundreds of microns. These structures are readily observable within stained tissue using

bright-field microscopy at low to medium magnifications. Hence, in applying FTIR

imaging (Levin and Bhargava 2005), we obtain the common structural detail employed

clinically and, additionally, spectral information indicative of tissue biochemistry. As

histologic classes contain identical chemical components, infrared vibrational spectra are

similar but reveal small differences in specific absorbance features. The technique pro-

posed by Fernandez et al. (2005) examines each cell types’ spectra and transforms each

spectrum into a vector of describing features—usually around the hundreds. A complete

description of this process is beyond the scope of this paper and can be found elsewhere

(Fernandez et al. 2005). Each pixel (cell present in the slice of micro array under analysis)

has an assigned spatial position in the array while the tissue type is assigned by a highly

experienced pathologist. Thus, the tissue classification can be cast into a supervised

classification problem (Mitchell 1997), where all the attributes are real-valued and the class

is the tissue type—ten classes: ephithelium, fibrous stroma, mixed stroma, muscle, stone,
lymphocytes, endothelium, nerve, ganglion, and blood. Figure 2 presents tissue types that

can be assigned by examining a stained image obtained, after the FTIR microsprectroscopy

on unstained tissue,by the pathologist. Each marked pixel in the image becomes a train-

ing example; hence, the usual smallest data set is around hundreds of thousand records

per array.

3 Larger, bigger, and faster genetics-based machine learning

Bernadó et al. (2001) presented a first empirical comparison between genetics-based

machine learning techniques (GBML) and traditional machine learning approached. The

authors reported that GBML techniques were as competent as traditional techniques. Later,

Bacardit and Butz (2006) repeated the analysis, obtaining similar results. Most of the

experiments presented on both papers used publicly available data sets provided by the

University of California at Irvine repository (Merz and Murphy 1998). Most of the data

sets are defined over tens of features and up to few thousands of records—in the larger

cases. However, a key property of GBML approaches is its intrinsic massive parallelism

and scalability properties. Cantú-Paz (2000) presented how efficient and accurate genetics

algorithms could be assembled, and Llorà (2002) presented how such algorithms can be

efficiently used for machine learning and data mining. However, there are elements that

need to be revisited when we want to efficiently apply GBML techniques to large data sets

such as the one described in the previous section.
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The GBML techniques require evaluating candidate solutions against the original data

set matching the candidate solutions (e.g., rules, decision trees, prototypes) against all

the instances in the data set. Regardless of the flavor used, Llorà and Sastry (2006)

showed that, as the problem grows, rule matching governs the execution time. For small

data sets (teens of attributes and few thousands of records) the matching process takes

more than 85% of the overall execution time marginalizing the contribution of the other

genetic operators. This number increases to 98% and above, when we move to data sets

with few hundreds of attributes and few hundred thousands of records. More than 98%

of the time is spent evaluating candidate solutions. Each evaluation can be computed in

parallel. Moreover, the evaluation process may also be parallelized on very large data

sets by splitting and distributing the data across the computational resources. A detailed

description of the parallelization alternatives of GBML techniques can be found else-

where (Llorà 2002).

Currently available off-the-shelf GBML methods and software distributions (Barry

and Drugow-itsch 1997; Llorà 2006) do not usually target large data sets. The two main

bottlenecks are large memory footprints and sequential-processing oriented processes.

Generally speaking, they were designed to run on single processor machines with

enough memory to fit the entire data set. Hence, designers did not paying much

Fig. 2 The figure presents the tissue labeling provided by a pathologist biopsy section of human prostate
tissue. Each spot represents the section of a needle. Different colors represent different tissue types
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attention to the memory footprint required to store the data set—usually completely

loaded into memory and the population of candidate solutions. These large complex

structures were geared to facilitate the programming effort, but they are not designed

toward the efficient evaluation of the candidate solutions. However, efforts have been

made to push GBML methods into domains which require processing large data sets.

Three different works need to be mentioned here. Flockhart (1995) proposed and

implemented GA-MINER, one of the earliest effort to create data mining systems based

on GBML systems that scale across symmetric multi-processors and massively parallel

multi-processors. Flockhart (1995) reviewed different encoding and parallelization

schemes and conducted proper scalability studies. Llorà (2002) explored how fine-

grained parallel genetic algorithms could become efficient models for data mining.

Theoretical analysis of performance and scalability were developed and validated with

proper simulations. Recently, Llorà and Sastry (2006) explored how current hardware

can efficiently speed up rule matching against large data sets. These three approaches

are the basis of the incremental rule learning proposed in the next section to approach

very large data sets.

Another important issue in real-world problems is the class distribution. Usually

most real problems have a clear class imbalance. Recently, Orriols-Puig and Bernadó-

Mansilla (2006) have revisited this issue, showing how GBML techniques successfully

learn and maintain proper descriptions for those minority classes. If not designed

properly, descriptions of majority classes will tend to govern the learned models,

starving the description of minority classes. Prostate tissue classification is a clear

example of extreme class imbalance. Figure 3 presents the tissue type class distribution.

The smaller tissue type has 64 records, where as the larger classes have several tens of

thousands records. hence, the developed approaches must account for class size

variation.

Fig. 3 Figure shows the tissue class distribution. Once the classes are reordered according to their
frequency in the data set, we can easily appreciate the extreme imbalance—the smaller tissue type has 64
records, where as the larger classes have several tens of thousands records
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4 The road to tractability

We describe in this section the steps we took to design a GBML method (NAX) able to deal

with very large data sets with class imbalance. NAX evolves, one at a time, maximally

general and maximally accurate rules. Then, the covered instance are removed and another

maximally general and maximally general rule is evolved and added to the previously

stored one forming a decision list. This process continues until no uncovered instances are

left—this process is also referred as the sequential covering procedure (Cordón et al.

2001). Llorà et al. (2005) showed that maximally general and maximally accurate rules

(Wilson 1995) could also be evolved using Pittsburgh-style Learning Classifier Systems.

Later, Llorà et al. (2007) showed that competent genetic algorithms (Goldberg 2002)

evolve such rules quickly, reliably, and accurately. The rest of this section describes (1)

efficient implementation techniques to deal with very large data sets, (2) the impact of class

imbalance, and (3) the NAX algorithm proposed.

4.1 Efficient implementations

As introduced earlier, when dealing with very large data sets, and regardless of the flavor

of the GBML technique used, we may spend up to 98% of the computational cycles trying

to match rules to the original data set (Llorà and Sastry 2006). Each solution evaluation is

independent of each other and, hence, it can be computed in parallel. Moreover, even the

matching nature of a rule—the representation we will use from now on—is highly parallel,

since conditions require performing simultaneous checks against different attributes per

record. Thus, efficient implementation can take advantage of parallelizing both elements.

4.1.1 Exploiting the hardware acceleration

Recently, multimedia and scientific applications have pushed CPU manufactures to include

support for vector instructions again in their processors. Both applications areas require

heavy calculations based on vector arithmetic. Simple vector operations such as add or

product are repeated over and over. During 1980s and 1990s supercomputers, such as Cray

machines, were able to issue hardware instructions that enabled basic vector arithmetics. A

more constrained scheme, however, has made its way into general-purpose processors

thanks to the push of multimedia and scientific applications. Main chip manufactures—

IBM, Intel, and AMD—have introduced vector instruction sets—Altivec, SSE3, and

3DNow+—that allow vector operations over packs of 128 bits by hardware. We will focus

on a subset of instructions that are able to deal with floating point vectors. This subset of

instructions manipulate groups of four floating-point numbers. These instructions are the

basis of the fast rule matching mechanism proposed.

Our goal is to evolve a set of rules that correctly classifies the current data set rom

prostate tissue. Using a knowledge representation based on rules allows us to inspect the

learned model, gaining insight into the biological problem as well. All the attributes of the

domain are real-value and the conditions of the rules need to be able to express conditions

in a <n spaces. We use a similar rule encoding to the one proposed by Wilson (2000b)—a

variation of the original work proposed by Wilson (2000a) and later reviewed by Stone and

Bull (2003)—and widely used in the GBML community. Rules express the conjunction of

tests across attributes. Each test may be defined in multiple flavors but, without loss of
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generality, we picked a simple interval based one. A simple example of an if-then rule,

could be expressed as follows:

1:0� a0 � 2:3 ^ � � � ^ 10:0� an � 23 ! c1 ð1Þ
Where the condition is the conjunction of the different attribute tests and the outcome is the

predicted class—a tissue type. We also allow a special condition—don0t care —which

just always returns true , allowing condition generalization. The rule below illustrates an

example of a generalized rule.

1:0� a0 � 2:3 ^ �3:0� a3 � 2 �! c1 ð2Þ

All attributes except a0 and a3 were marked as don0t care:
Each condition can be encoded using 2 floating-point numbers per condition, where ai

contains the lower bound of the condition and xi its upper bound. Thus, the condition ai £
a0 £ xi just requires to store the two floating-point numbers. For efficiency reasons we

store them in two separate vectors, on containing the lower bounds and the other con-

taining the upper bounds. The position in a vector indicates the attribute being tested. The

don0t care condition is simply encoded as ai[xi and, hence, we do not need to store any

extra information.

Matching a rule requires performing the individual condition tests before the final and
operation can be computed. Vector instruction sets improve the performance of this pro-

cess by performing four operations at once. Actually, this process may be regarded as four

parallel running pipelines. The process can be further improved by stopping the matching

process when one test fails—since that will turn the condition into false.

Figure 4 presents a C implementation the proposed hardware-supported rule matching.

The code assumes that the two vectors containing the upper and lower bounds are provided

and records are stored in a two dimensional matrix. Figure 5 presents the vectorized

implementation of the code presented in Fig. 4 using SSE2 instructions. Exploiting the

hardware available can speed between 3 and 3.5 times the matching process, as also shown

elsewhere (Llorà and Sastry 2006).

4.1.2 Massive parallelism

Since most of the time is spent on the evaluation of candidate rules when dealing with large

data sets, our next goal was to find a parallelization model that could take advantage of this

peculiarity. Due the quasi embarrassing parallel (Grama et al. 2003) nature of the candi-

date rule evaluation, we designed a coarse-grain parallel model for distributing the

evaluation load. Cantú-Paz (2000) proposed several schemes, showing the importance of

the trade-off between computation time and time spent communicating. When designing

the parallel model, we focused on minimizing the communication cost. Usually, a feasible

solution could be a master/slave one—the computation time is much larger than the

communication time. However, GBML approaches tend to use rather large populations,

forcing us to send rule sets to the evaluation slaves and collect the resulting fitness. These

schemes also increment the sequential sections that cannot be parallelized, threatening the

overall speedup of the parallel implementation as a result of Ambdhals law (Amdahl 1967).

To minimize such communication cost, each processor runs an identical NAX algorithm.

They are all seeded in the same manner, hence, performing the same genetic operations

and only differing in the portion of the population being evaluated. Thus, the population is
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treated as collection of chunks where each processor evaluates its own assigned chunk,

sharing the fitness of the individuals in its chunk with the rest of the processors. Fitness can

be encapsulated and broadcasted maximizing the occupation of the underlying packing

frames used by the network infrastructure. Moreover, this approach also removes the need

for sending the actual rules back and forth between processors—as a master/slave approach

would require—thus, minimizing the communication to the bare minimum—the fitness.

Figure 6 presents a conceptual scheme of the parallel architecture of NAX:
To implement the model presented in Fig. 6, we used C and a message passing interface

(MPI)—we used the OpenMPI implementation (Gabriel et al. 2004). Figure 7 shows the

code in charge of the parallel evaluation. Each processor computes which individuals are

assigned to it. Then it computes the fitness and, finally, it just broadcast the computed

fitness. The rest of the process is left untouched, and besides the cooperative evaluation, all

the processors end generating the same evolutionary trace.

4.2 Rule sets as individuals

One main characteristic of the so-called Pittsburgh-style learning classifier systems—a

particular type of GBML—is that individuals encode a rule set (Goldberg 1989; Llorà and

Garrell 2001; Goldberg 2002). Thus, evolutionary mechanisms directly recombine one rule

set against another one. For classification tasks of moderate complexity, the rule sets are

1. void match_seq_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
2. int i,j,k,iCnt,iClsIdx,iGround,iPred;
3. register int iMatcheable;
4. Instance ins;
5.
6. iClsIdx = rs->iCorrectedDim;
7. clean_fitness_rules_set(rs);
8. for ( i=0 ; i<iRows ; i++ ) {
9. ins = is[i];
10. iPred=-1;
11. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
12. iMatcheable = 1;
13. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
14. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
15. k++,iCnt++ ) {
16. iMatcheable = iMatcheable &&
17. !( (rs->pfLB[k]<=rs->pfUB[k]) &&
18. ( ins[iCnt]<rs->pfLB[k] || ins[iCnt]>rs->pfUB[k]));
19. }
20. if ( iMatcheable )
21. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
22. }
23. iPred = (iPred==-1)?rs->iClasses:iPred;
24. iGround=(int)ins[iClsIdx];
25. rs->pConfMat[iGround][iPred]++;
26. }
27. }

Fig. 4 This figure presents a sequential implementation of the rule matched process in C . A rule set is
match against a data set. Lines 16, 17, and 18 implement the condition test for one attribute. The
implementation also computes the confusion matrix that contains the ground truth versus predicted class
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not large. However, for complex problems, the potential number of required rules to ensure

proper classification may need large amounts of memory that become prohibitive. The

requirements increase even further in the presence of noise (Llorà and Goldberg 2003).

1. #define VEC_MATCH(vecFLB,fLB,vecFUB,fUB,vecINS,fIN,vecTmp,vecOne,vecRes) {\
2. vecFLB = _mm_load_ps(fLB);\
3. vecFUB = _mm_load_ps(fUB);\
4. vecINS = _mm_load_ps(fIN);\
5. \
6. vecRes = (__m128i)_mm_cmpgt_ps(vecFUB,vecFLB);\
7. vecTmp = _mm_or_si128(\
8. (__m128i)_mm_cmpgt_ps(vecFLB,vecINS),\
9. (__m128i)_mm_cmpgt_ps(vecINS,vecFUB)\

10. );\
11. vecRes = _mm_andnot_si128(_mm_and_si128(vecRes,vecTmp),vecOne);\
12. }
13.
14. void match_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
15. int i,j,k,iCnt,iClsIdx,iGround,iPred;
16. register int iMatcheable;
17. Instance ins;
18.
19. __m128i vecRes,vecTmp,vecOne;
20. __m128 vecFLB,vecFUB,vecINS;
21.
22. vecOne = (__m128i){-1,-1};
23.
24. iClsIdx = rs->iCorrectedDim;
25. clean_fitness_rules_set(rs);
26. for ( i=0 ; i<iRows ; i++ ) {
27. // Classify the instance
28. ins = is[i];
29. iPred=-1;
30. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
31. iMatcheable = 1;
32. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
33. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
34. k+=VBSIF,iCnt+=VBSIF ) {
35. VEC_MATCH(vecFLB,&(rs->pfLB[k]),
36. vecFUB,&(rs->pfUB[k]),
37. vecINS,&(ins[iCnt]),vecTmp,vecOne,vecRes);
38. iMatcheable = 0xFFFF==_mm_movemask_epi8(vecRes);
39. }
40. if ( iMatcheable )
41. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
42. iPred = (iPred==-1)?rs->iClasses:iPred;
43. iGround=(int)ins[iClsIdx];
44. rs->pConfMat[iGround][iPred]++;
45. }
46. }

Fig. 5 This figure presents a vectorized implementation of the rule matching process presented in Fig. 4.
Lines 1–12 implement the parallelized test against four attributes using vector instructions. The code is
written using C intrinsics for SSE2 compatible architectures. This code runs on P4 or newer Intel processors
and Opteron or Athlon 64 AMD processors
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Parallelization may not help much if we need to send large rule sets across the commu-

nication network. For such reasons, GBML techniques work very well on moderate

complexity problems (Bernadó et al. 2001; Bacardit and Butz 2006). However, they need

to be modified to deal with complex and large data set, and also avoid the boundaries

imposed by the issues mentioned above.

4.3 NAX: Incremental rule learning for very large data sets

An incremental rule learning approach may alleviate memory footprint requirements by

evolving only one rule at a time, hence, reducing the memory requirements. However, one

rule by itself cannot solve complex problems. For such a reason, each evolved rule is added

to the final rule set, and the covered examples are removed from the current training set.

The process is repeated until no instances are left in the training set. This approach already

introduced by Cordón et al. (2001) and later also used by Bacardit and Krasnogor (2006)

allows maintaining relatively small memory footprints, making feasible processing large

data sets—as the prostate tissue classification data set. However, an incremental approach

to the construction of the rule set requires paying special attention to the way rules are

evolved. For each run of the genetic algorithm used to evolve a rule, we would like to

obtain a maximally general and maximally accurate rule, that is, a rule that covers the

maximum number of example without making mistakes (Wilson 1995).

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 0

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 1

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor p

Fig. 6 This figure illustrates the parallel model implemented. Each processor is running the same identical
NAX algorithm. They only differ in the portion of the population being evaluated. The population is treated as
collection of chunks where each processor evaluates its own assigned chunks sharing the fitness of these
individuals with the rest of the processors. This approach minimizes the communication cost
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Llorà et al. (2007) have shown that evolving such rules is possible. In order to promote

maximally general and maximally accurate rules à la XCS (Wilson 1995), we compute the

accuracy (a) and the error (e) of a rule (Llorà et al. 2005). The accuracy is the proportion
of overall examples correctly classified, and the error is the proportion of incorrect clas-

sifications issued. For simplicity reasons, we use the proportion of correctly issues

classifications instead, simplifying the final fitness calculation. Let nt+ be the number of

positive examples correctly classified, nt- the number of negative examples correctly

classified, nm the number of times a rule has been matched, and nt the number of examples

available. Using these values, the accuracy and error of a rule r can be computed as:

aðrÞ ¼ ntþðrÞ þ nt�ðrÞ
nt

ð3Þ

eðrÞ ¼ ntþðrÞ
nmðrÞ ð4Þ

Once the accuracy and error of a rule are known, the fitness can be computed as

follows.

1. void evaluate_population ( Population * pp, InstanceSet is, int iDim, int iRows )
2. {
3. int i;
4.
5. /* Compute the fragments of this processor */
6. int iFrag = pp->iLen/FCS_processes;
7. int iInit = FCS_process_id*iFrag;
8. int iLast = (FCS_process_id+1==FCS_processes)?
9. pp->iLen:

10. (FCS_process_id+1)*iFrag;
11. int iCnt = 0;
12. int j,k,l;
13.
14. /* Create the bucket for the broadcast */
15. float faFit[2*iFrag];
16. float faTmp[2*iFrag];
17.
18. /* Evaluate the given chunk assigned to the processor */
19. for ( i=iInit,iCnt=0 ; i<iLast ; i++,iCnt++ ) {
20. match_rule_set(pp->prs[i],is,iDim,iRows );
21. compute_raw_accuracy_fitness_rule_set(pp->prs[i]);
22. faFit[iCnt] = pp->prs[i]->fFitness;
23. }
24.
25. /* Broadcast each of the chunks */
26. for ( i=0 ; i<FCS_processes ; i++ ) {
27. MPI_Bcast((i==FCS_process_id)?faFit:faTmp,iCnt,MPI_FLOAT,i,MPI_COMM_WORLD);
28. if ( i!=FCS_process_id )
29. for ( l=0,j=i*iFrag, k=(i+1)*iFrag ; j<k ; j++,l++ )
30. pp->prs[j]->fFitness = faTmp[l];
31. }
32. }

Fig. 7 This figure presents an implementation of the proposed parallel evaluation scheme using C and MPI:
The piece of code presented below is the only one modified to provide such parallelization capabilities.
Each processor computes which individuals are assigned to it (lines 6–10), then it computes the fitness (lines
10–23), and then it just broadcast the computed fitness (lines 26–31)
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f ðrÞ ¼ aðrÞ � eðrÞc ð5Þ
where c is the error penalization coefficient. The above fitness measure favors rules with a

good classification accuracy and a low error, or maximally general and maximally accurate

rules. By increasing c, we can bias the search towards correct rules. This is an important

element because assembling a rule set based on accurate rules guarantees the overall

performance of the assembled rule set. In our experiments, we have set c to 18 to strongly

bias the search toward maximally general and maximally accurate rules.

NAX ’s efficient implementation of the evolutionary process is based on the techniques

described using hardware acceleration—Sect. 4.1.1—and coarse-grain parallelism—

Sect. 4.1.2. The genetic algorithm used was a modified version of the simple genetic
algorithm (Goldberg 1989) using tournament selection (s = 4), one point crossover, and

mutation based on generating new random boundary elements.

5 Experiments

This section present the results achieved using NAX: To allow the reader to compare with

other techniques, we compare the results obtained using NAX on small data sets provided by

the UCI repository (Merz and Murphy 1998) to other well-known supervised learning

algorithms. Finally, we present the first results on the prostate tissue prediction obtained

using NAX. Results focus on the viability of the NAX approach.

5.1 Some UCI repository data sets

The UCI repository (Merz and Murphy 1998) provides several data sets for different

machine learning problems. These data sets have been widely used to test traditional

machine learning and GBML techniques. Table 1 list the data sets used. Due to the nature

of the prostate tissue type classification, we only chose data sets with numeric attributes.

Three of these data sets are of relevant interest: (1) son, by far the one with larger

dimensionality, (2) gls, the one with large number of classes, (3) tao, proposed by Llorà

and Garrell (2001), having complex and non-linear boundaries.

Table 1 Summary of the data sets used in the experiments

ID Data set Size Missing
values(%)

Numeric
attributes

Nominal
attributes

Classes

bre Wisconsin Breast Cancer 699 0.3 9 – 2

bpa Bupa Liver Disorders 345 0.0 6 – 2

gls Glass 214 0.0 9 – 6

h� s Heart Stats-Log 270 0.0 13 – 2

ion Ionosphere 351 0.0 34 – 2

irs Iris 150 0.0 4 – 3

son Sonar 208 0.0 60 – 2

tao Tao 1888 0.0 2 – 2

win Wine 178 0.0 13 – 3
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We could have chosen complex algorithms as baselines for NAX . However, we would

not be able to use them to repeat the experimentation on the prostate tissue classification

domain. The algorithms used in the comparison presented in Table 2 were 0-R (Holte

1993) (a simple base line based on majority class classification) and C4.5 (Quinlan 1993).

Results show percentage of correct classifications and standard deviation from stratified

ten-fold cross-validation runs. Paired t-test comparisons showed no statistically significant

differences between the pruned tree produced by C4.5 and NAX results. This experiments

also helped validate the distributed implementation proposed by NAX: Further results on

empirical comparisons can be found elsewhere (Bernadó et al. 2001; Bacardit and Butz

2006).

5.2 Prostate tissue classification

With the previous results at hand, we ran NAX against the prostate tissue classification data

set. The original data set is defined by 93 attributes. In this paper, however, we used the

reduced version of this data set proposed by (Fernandez et al. 2005) which contains 20

selected attributes out of the 93 available. The dataset is form by 171,314 records. Our goal

was to explore how well NAX could generalize over unseen tissue—this is the first step to be

able to address the cancer prediction problem. The other reason that motivated such

experimentation was to achieve similar accuracy results as the ones published earlier by

Fernandez et al. (2005) using a modified Bayes technique. If NAX could perform at the

same level, we will also obtain a set of rules of interest to the spectroscopist. The inter-

pretation of the rules will provide insight on how to interpret the models provided by

NAX —which could not be done with the models early used by Fernandez et al. (2005).

We conducted stratified 10-fold cross-validation experiments to measure the general-

ization capabilities of NAX for this problem. Since the problem was rather small—larger

data set are being prepared to be run at the supercomputing facilities provided by the

National Center for Supercomputing Applications—we run the ten-fold cross-validation

runs in a 3GHz dual core Pentium D computer with 4 GB of RAM. NAX took advantage of

the hardware support to speedup the matching process and uses two MPI processes to

parallelize—as introduced in Fig. 6—the evaluation of the overall population. Each fold

Table 2 Experimental results: percentage of correct classifications and standard deviation from stratified
ten-fold cross-validation runs

ID 0–R C4.5 NAX

bre 65.52 ± 1.16 95.42 ± 1.69 96.43 ± 1.72

bpa 57.97 ± 1.23 65.70 ± 3.84 64.07 ± 8.36

gls 35.51 ± 4.49 65.89 ± 10.47 68.02 ± 8.69

h� s 55.55 ± 0.00 76.30 ± 5.85 75.56 ± 9.39

ion 64.10 ± 1.19 89.74 ± 5.23 89.19 ± 5.27

irs 33.33 ± 0.00 95.33 ± 3.26 94.67 ± 4.98

son 53.37 ± 3.78 71.15 ± 8.54 73.62 ± 9.72

tao 49.79 ± 0.17 95.07 ± 2.11 97.41 ± 0.92

win 39.89 ± 3.22 93.82 ± 2.85 94.34 ± 6.09

Paired t-test comparisons showed no statistically significant differences between C4.5 and NAX results

0–R result are just provided as guiding base line
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took about one hour to complete, with the entire classification lasting less than half a day.

We conducted a simple test of adding a second computer with an identical configuration.

The overall time for cross-validation was reduced to half. Rough estimates—which will

better measured when larger experiments are conducted on NCSA super computers—show

that the sequential portion is around 1:1000 for this small data set. Numbers get better as

data set increases, which demonstrates that we will be able to process very large data sets

and efficiently exploit larger numbers of processors.

We proposed another measure of effectiveness, namely how many records can be

processed per second. Using a single processor with the hardware acceleration mechanisms

built into NAX, and the evolved rule set formed by 1,028 rules, the average throughput was

around 60,000 records per second. For the prostate tissue classification, it took less than

three seconds to classify the entire data set. Once the rule set is learnt, the classification

problem falls again into the category of embarrassingly parallel problems (Grama et al.

2003). Since no communication is needed, the speedup grows linearly with the number of

processors added—with the proper rule set replication and data set chunking. Thus, with

the dual core box used we where able to just double the throughput (120,000 records per

second) by chunking the data set and use both processors.

The previous results show the benefits of hardware acceleration and parallelization, but

NAX was also able to achieve very competitive classification accuracy in generalization,

correctly classifying 97.09 ± 0.09 of the records (pixels) during the stratified ten-fold

cross-validation. Figure 8 presents the regenerated prostate tissue classification image

presented in Fig. 2 using a rule set assembled by NAX: Figure 8a presents the incorrectly

classified pixels. Most of the mistakes by the rule set involve similar tissues with few

training records available. This trend was also shown elsewhere (Fernandez et al. 2005).

C4.5 does not provide any statistically significant improvement (only a marginal, not

statistically significant, 0.7%) and provided large decision trees with more than 5,000

leaves—not to mention the lack of scalability when compared to NAX:
The rule set assembled by NAX represents an incremental assembling of maximally

general and maximally accurate rules. Thus, we can compute how the accuracy of such

ensemble improves as new rules are added. Figure 9 presents the overall accuracy as rules

are added. It shows an interesting behavior for classifying prostate tissue. Using only 20

rules out of the 1,028 evolved ones, the overall accuracy is 90%, the incorrectly classified

1.3% pixels, and 8.7% were left unclassified. After inspecting the misclassified pixels most

of them belongs to borders between tissues and mislabeling arises from the image dis-

cretization—one pixel containing different tissue types. Table 3 presents the initial four

rules that covering 80% of the instances belonging to the two larger tissue types—

epithelium and fibrous stroma. Such results are relevant, not only for their accuracy, but

also because of the insight they provide to the spectroscopist about the problem structure.

6 Conclusions and further work

This paper has presented the initial results achieved in predicting prostate tissue type using

GBML techniques. Being able to classify unseen tissue quickly, reliably, and accurately, is

the first step towards the creation of CADx systems that may assist a pathologist diag-

nosing prostate cancer. We have proposed two main efficiency enhancement techniques for

GBML—exploiting hardware parallelization via vector instructions and coarse-grain par-

allelism via the usage of MPI libraries—which allowed us to approach very large data sets.

These techniques, together with an incremental genetics-based rule learning approach to
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assemble rule sets formed by maximally general and maximally accurate rules, have led to

the creation of NAX, a system specialized on dealing with large data sets.

Results have shown accurate classification models for prostate tissue along with good

scalability of the NAX implementation. Results also reveal peculiarities of the underlying

problem structure. With very few rules—20—we were able to correctly classify up to 90%

Fig. 8 The figures presented
above show the regenerated
prostate tissue classification
image presented in Fig. 2. (a)
presents the correctly classified
pixels. (b) presents the
incorrectly classified pixels
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of the tissue. Our current work is focused on analyzing the larger data sets containing all

the available features and different tissue sources to test the parallelization scalability of

NAX on NCSA supercomputers. Once accomplished, the procedure will provide confidence

in creating a CADx system to generate a diagnosis based on the evolved models.
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Llorà X (2002) Genetics-based machine learning using fine-grained parallelism for data mining. Doctoral

dissertation, Enginyeria i Arquitectura La Salle. Ramon Llull University, Barcelona, Catalonia, Euro-
pean Union
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Orriols-Puig A, Bernadó-Mansilla E (2006) A further look at UCS classifier system. In Proceedings of the

8th annual conference on genetic and evolutionary computation workshop program. ACM Press
Quinlan JR (1993) C4.5: Programs for machine learning. Morgan Kaufmann
Stone C, Bull L (2003) For real! XCS with continuous-valued inputs. Evol Comput J 11(3):279–298
Wilson S (1995) Classifier fitness based on accuracy. Evol Comput 3(2):149–175
Wilson S (2000a) Get real! XCS with continuous-valued inputs. Lect Notes Comput Sci 1813:209–219
Wilson S (2000b) Mining oblique data with xcs. In Revised papers of the 3th international workshop on

Learning Classifier Systems (IWLCS 2000). Springer, pp 158–176

X. Llorà et al.
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ABSTRACT
Cancer diagnosis is essentially a human task. Almost univer-
sally, the process requires the extraction of tissue (biopsy)
and examination of its microstructure by a human. To im-
prove diagnoses based on limited and inconsistent morpho-
logic knowledge, a new approach has recently been proposed
that uses molecular spectroscopic imaging to utilize micro-
scopic chemical composition for diagnoses. In contrast to
visible imaging, the approach results in very large data sets
as each pixel contains the entire molecular vibrational spec-
troscopy data from all chemical species. Here, we propose
data handling and analysis strategies to allow computer-
based diagnosis of human prostate cancer by applying a
novel genetics-based machine learning technique (NAX). We
apply this technique to demonstrate both fast learning and
accurate classification that, additionally, scales well with
parallelization. Preliminary results demonstrate that this
approach can improve current clinical practice in diagnos-
ing prostate cancer.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.
I.5.4 [Pattern Recognition]: Applications.
J.3 [Life & Medical Science]: Medical Information Systems.

General Terms
Algorithms, Design, Performance, Experimentation.
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Genetics-Based Machine Learning, Learning Classifier Sys-
tems, Parallelization, Prostate Cancer.
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1. INTRODUCTION
Pathologist opinion of structures in stained tissue is the

definitive diagnosis for almost all cancers and provides criti-
cal input for therapy. In particular, prostate cancer accounts
for one-third of noncutaneous cancers diagnosed in US men,
and it is a leading cause of cancer-related death. Hence,
it is, appropriately, the subject of heightened public aware-
ness and widespread screening. If prostate-specific antigen
(PSA) or digital rectal screens are abnormal, a biopsy is
considered to detect or rule out cancer. Prostate tissue is
extracted, or biopsied, from the patient and examined for
structural alterations. The diagnosis procedure involves the
removal of cells or tissues, staining them with dyes to pro-
vide visual contrast and examination under a microscope by
a skilled person (pathologist).

The challenge in prostate cancer research and practice
is to provide a novel Due to personnel, tarining, natural
variability and biologic differences, the challenge in prostate
cancer research and practice is to provide accurate, objec-
tive and reproducible decisions. Conventional optical mi-
croscopy followed by manual recognition has been demon-
strated to be inadequate for this task. [18]. Hence, we have
recently proposed developing a practical approach to this
problem using chemical, rather than morphologic, imaging.
[19]. In this approach, Fourier transform infrared imag-
ing (FTIR) is employed to provide the entire vibrational
spectroscopic information from every pixel of a sample’s mi-
croscopy image. While the first steps of developing novel
imaging and sampling technologies is now reliable, [7] the
computational challenge of providing robust classification
algorithms that can rapidly provide decisions remains. Due
to the above advances in imaging and sampling, data from
thousands of patients is available to train and validate al-
gorithms for different disease states. While the application
and type of data are unique, a further confounding factor re-
quired efficiently processing large volumes of data generated
by FTIR imaging. The classification problem can be for-
mulated as a supervised learning problem in which several
million pixels (hundred of gigabytes) of accurately labeled
data are available for model training and validation. The
volume of tissue and (future) need for intra-operative diag-
noses imply that rapid and accurate diagnoses are crucial
to allow physicians to explore all possible courses of action.
Under these conditions, traditional supervised learning ap-
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proaches and implementations do not scale to provide diag-
noses in an appropriate time frame. Hence, efficiently pro-
cessing and learning models from gigabytes of FITR imag-
ing data requires a careful design of the supervised learning
algorithm. Moreover, the biological nature of the problem
requires that such models be interpretable to provide funda-
mental new insight into the disease process. Genetics-based
machine learning (GBML) techniques take advantage of the
“quasi embarrassing parallelism” [17] to provide scaleable,
fast, accurate, reliable, and interpretable models. In this
paper we present an approach engineered to the desired so-
lutiona and constraints of addressing this human task. A
modified version of a sequential genetics-based rule learner
that exploits massive parallelisms via the message passing
interface (MPI) and efficient rule-matching using hardware-
oriented operations is developed. We named this system NAX

[24], and we have shown that its performance is compara-
ble to traditional and genetics-based machine learning tech-
niques on an array of publicly available data sets. We now
show thatNAX—taking advantage of both hardware and soft-
ware parallelism—is able to provide prostate cancer diag-
noses that are human-competitive. In this paper, we present
preliminary results supporting this outcome.

The paper is structured as follows. Section 2 provides
an overview of our approach towards computer-aided diag-
noses for prostate cancer. Procedure and form of the data
are summarized in section 3. NAX is introduced in section
4, where we describe the basic components and design deci-
sions in this approach. In section 5 we present preliminary
results indicating that the approach presented in this paper
is human-competitive. Finally, section 6 summarizes some
conclusions and further research.

2. PROBLEM DESCRIPTION
Prostate cancer is the most common non-skin malignancy

in the western world. The American Cancer Society
estimated 234,460 new cases of prostate cancer in 2006
[31]. Recognizing the public health implications of this
disease, men are actively screened through digital rectal
examinations and/or serum prostate specific antigen (PSA)
level testing. If these screening tests are suspicious, prostate
tissue is extracted, or biopsied, from the patient and exam-
ined for structural alterations. Due to imperfect screening
technologies and repeated examinations, it is estimated that
more than 1 million people undergo biopsies in the US alone.

2.1 Prostate Cancer Diagnosis
The removal of a small section of prostate is most of-

ten accomplished by core biopsy. A needle is inserted into
the tissue and several (6-23) samples are obtained from dif-
ferent positions. Biopsy, followed by manual examination
under a microscope is the primary means to definitively di-
agnose prostate cancer as well as most internal cancers in
the human body. Pathologists are trained to recognize pat-
terns of disease in the architecture of tissue, local structural
morphology and alterations in cell size and shape. Specific
patterns of specific cell types distinguish cancerous and non-
cancerous tissues. Hence, the primary task of the patholo-
gist examining tissue for cancer is to locate foci of the cell
of interest and examine them for alterations indicative of
disease.

The specific cells in which cancer arises in the prostate

are epithelial cells. While epithelial-origin cancers account
for over 85% of all human cancers, they account for more
than 95% of prostate cancers. In prostate tissue, epithe-
lial line secretory ducts within the structural cells (collec-
tively termed ‘stroma’) that allow the tissue to maintain its
structure and function. Hence, a pathologist will first locate
epithelial cells in a biopsy and, to examine for cancer, will
mentally segment them from stroma.

Biopsy samples are prepared in a specific manner to aid
in recognition of cells and disease. The sample is sliced thin
(∼ 5μm thickness), placed on a glass slide and stained with
a dye to provide contrast. The most common dye is a mix-
ture of hematoxylin and eosin (H&E), which stains protein-
rich regions pink and nucleic acid-rich regions blue. Empty
space, lipids and carbohydrates are typically not stained and
characterized by white color in images. Staining allows the
pathologist to identify cells based on their nucleus and extra-
nuclear regions. Patterns of the same cell type characterize
structures. For example, epithelial cells arranged in a circu-
lar manner around empty space are characteristic of a duct
and endothelial cells similarly arranged are characteristic of
blood vessels. The empty space enclosed within a duct in
pathology images is termed a lumen. The distortion of the
circular pattern of epithelial cells around a lumen is charac-
teristic of cancer.

In low severity cancers, lumens are only slightly distorted,
while higher grades of cancer display a lack of lumen and
simply consist of masses of epithelial cells supported by little
stroma. The relative distortion and change in lumen shape
is organized into a grading scheme to assess the severity of
the disease, Gleason Scoring system, which is the primary
measure of disease that defines diagnosis, helps direct ther-
apy and helps predict those at danger of dying from the
disease. Since prostate cancer is multi-focal and the disease
quite variable, two dominant patterns of epithelial distortion
are selected and each is independently graded on a scale of
1-5. The grades are then summed to provide a Gleason score
ranging from 2 (low grade cancer) to 10 (maximum danger
cancer). This scale has been widely used since its creation
in the 1960s and currently forms the clinical standard of
practice. Manual Gleason scoring, however, has severe lim-
itations.

2.2 Limitations of Current Practice
Widespread screening for prostate cancer has resulted in

a large workload of biopsied men [16], placing an increasing
demand on services. Operator fatigue is well-documented
and guidelines limit the workload and rate of examination
of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist vari-
ation complicates decision-making. The consistency in de-
termining Gleason scores is rather poor. Intra-observer mea-
surements show that a pathologist confirms their own score
less than 50% of the time and are ±1 score no more than
80% of cases [2]. Hence, the diagnoses for ∼ 50% of cases
may change and may be significantly altered for ∼ 20% of
cases ultimately leading to changes in therapy for a patient
subset [30]. The numbers are decidedly cause for concern.
For example, a recent study including 15 pathologists and
537 prostate cancer patients, 70.8% of Gleason scores were
shown to be inaccurate when compared with the patient’s
final outcome [18]. Second opinions [29] improve assessment
and are cost-effective [10], not to mention their utility in mit-
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igating the effects of healthcare costs, lost wages, morbidity,
or potential litigation. In summary, the manual recognition
of spatial patterns leaves much to be desired from a process
perspective and has far-reaching social effects from a public
health perspective.

For the reasons underlined above, there is an urgent need
for high-throughput, automated and objective pathology
tools. We believe that this need is best met by employing
the power of computer algorithms and advanced processing
to address prostate cancer diagnosis and grading.

The information content of conventionally stained images
is limited, inherently non-specific and varies greatly within
patient populations and processing conditions. Hence, the
information derived from visible microscopy images is fun-
damentally limited and automated methods of analyzing
stained images have failed to provide a sufficiently robust al-
gorithm to diagnose disease. An alternative to morphology-
based microscopy are molecular microscopy techniques to
probe disease. Molecular technologies for disease diagnosis
are an exciting venue for investigations as they promise bet-
ter diagnostic capabilities through objective means and a
multitude of chemicals to provide insight into the changes
indicative of the disease process. In particular, spec-
troscopy tools allow for the measurement of many molecular
species simultaneously. Spectroscopic techniques in imaging
form, notably using optics, further enable the analysis to
be conducted without perturbing the tissue [11]. In this
manuscript, we present the analysis of prostate tissue with
one such technique, Fourier transform infrared (FTIR) spec-
troscopic imaging.

2.3 Molecular Imaging
Infrared spectroscopy is a classical technique for measur-

ing the chemical composition of specimens. At specific fre-
quencies, the vibrational modes of molecules are resonant
with the frequency of infrared light. By monitoring all fre-
quencies in the region, a pattern of absorption can be cre-
ated. This pattern, or spectrum, is characteristic of the
chemical composition and is hypothesized to contain infor-
mation that will help determine the cell type and disease
state of the tissue. Recently, FTIR spectroscopy has been
developed in an imaging sense. Hence, The data are similar
to optical microscopy. The first difference is that no external
dyes are needed and the contrast in images can be directly
obtained from the chemical composition of the tissue. The
second is that each pixel in the visible image contains RGB
values but in IR imaging contains several thousand values
across a bandwidth (2000 − 14000nm) that is ∼ 40 times
larger than the visible spectrum (400 − 700nm) [7].

3. DATA AND METHODOLOGY

3.1 Experimental Details
Prostate tissues were obtained from Cooperative Hu-

man Tissue Network for the tissue array research program
(TARP) laboratory. Using these tissues, tissue microarrays
were prepared using a Beecher automated tissue arrayer con-
taining a video overlap system and 0.6mm needles. Appro-
priate institutional review board and National Institutes of
Health (USA) guidelines for the protection of human sub-
jects were followed. 5μm sections of tissue were floated on an
infrared transmissive optical window for FTIR spectroscopic
imaging. Another 5μm section obtained from the same point

Figure 1: Conventional Staining and Automated
Recognition by Chemical Imaging. (A) Typical
H&E stained sample, in which structures are de-
duced from experience by a human. Highlights of
specific regions in the manner of H&E is possible
using FTIR imaging without stains. (B) Absorp-
tion at 1080 cm-1 commonly attributed to nucleic
acids and (C) to proteins of the stroma. The data
obtained is 3 dimensional (D) from which spectra
(E) or images at specific spectral features may be
plotted.

on the tissue specimen was observed using traditional mi-
croscopy for comparison. Expert pathologists determined
the tissue classification using these microscopy samples by
staining with H&E. Pathologists’ classification were used
as the ‘gold standard’ for comparison with the results from
the methods mentioned in this paper.

Tissues were analyzed using a Michelson interferometer
attached to a microscope (Perkin-Elmer Spotlight 300) in
transmission mode at a resolution of 4cm−1 The sample
was then raster scanned to obtain images of the entire spec-
imen. Typical specimen size is 600μm × 600μm with each
pixel being 6.25μm × 6.25μm on the sample plane. Spectra
are composed of 1, 641 sample points of the spectral range
4, 000 − 720cm−1. Data acquisition using these techniques
required 40 minutes per cylindrical core of the tissue mi-
croarray to yield a root mean square signal to noise ratio of
500 : 1. A typical array was composed of approximately 2.5
million pixels and required 40 GB of storage space.

The data obtained from FTIR imaging is three-
dimensional. The x− and y−dimensions locate pixels on
the tissue-sample plane. The z-dimension values compose
the IR spectrum for the corresponding pixel. The spectra
can be analyzed to determine what type of tissue (epithe-
lium, stroma, or muscle) the specimen is as well as whether
the tissue is malignant or benign. We have developed this
technology to provide data from tissue in minutes and em-
ploy a high-throughput sampling strategy using Tissue Mi-
croarrays (TMA) to obtain data.[19] Samples from multiple
tissues, from multiple patients and multiple clinical settings
are included in the data set to maximize the sampling of
natural variability and ensure the development of robust
analysis algorithms. These high-throughput imaging and
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microarray technologies combine to provide very large data
sets—see Figure 1. A typical single core consists of 300×300
pixels on the x − y plane with 1641 bands on the z-axis. A
tissue microarray consists of several hundred such cores and
analysis of such large datasets (typically, tens of GB) is com-
putationally expensive.

3.2 Data Format
Each pixel’s z-dimension contains a spectrum character-

istic of the chemical composition of that region of the speci-
men. Certain spectral quantities provide measures of chem-
istry. For example, the height of each feature is propor-
tional to its abundance, the peak position is associated with
the vibrational identity and peak shape often reflects the
multitude of environments around the molecule. Therefore,
differences in spectral characteristics can be used in classifi-
cation and these exact spectral features are termed ‘metrics’.
For example, the ratio of absorbance of the spectral peak at
1080cm−1 to the spectral peak at 1545cm−1 is commonly
used to distinguish epithelial from stromal cells. Trained
spectroscopists determine these metrics based upon exam-
ination of spectral patterns. Hence, the reduction of ull
spectra to descriptive metrics forms an intelligent dimen-
sionality reduction strategy. Genetic algorithms form de-
cision rules based upon these metrics to classify pixels by
tissue type. Furthermore, the transparency of the genetic
algorithms allows the scientist to correlate specific rules to
biological features (tissue type and cancer classification) via
metrics based upon spectral characteristics.

4. APPROACH
In this section we review related work on the GBML com-

munity, highlighting previous efforts to deal with large data
sets. We also present the motivation and techniques that
lead to the design of NAX. Special attention is paid to the
description of the hardware and software techniques used,
as well as to the design of a scalable GBML algorithm.

4.1 Related Background
Bernadó, Llorà & Garrell [6] presented a first empir-

ical comparison between genetics-based machine learning
techniques (GBML) and traditional machine learning ap-
proached. The authors reported that GBML techniques
were able to perform as well as traditional techniques. Later
on, Bacardit & Butz [3] repeated the analysis again obtain-
ing similar results. Most of the experiments presented on
both papers were conducted using publicly available data
sets provided by the University of California at Irvine repos-
itory [28]. Most of the data sets are defined over tens of
features and up to few thousands of records. However, a
key property of GBML approaches is its intrinsic massive
parallelism and scalability properties. Cantú-Paz [8] pre-
sented how efficient and accurate genetics algorithms could
be assembled, and Llorà [21] presented how such algorithms
can be efficiently used as machine learning and data mining
techniques.

GBML techniques require evaluating candidate solutions
against the original data set matching the candidate solu-
tions (e.g. rules, decision trees, prototypes) against all the
instances in the data set. Regardless of the GBML flavor
used, Llorà & Sastry [25] showed that as the problem grows,
the matching process governs the execution time. For small
data sets (teens of attributes and few thousands of records)

the matching process takes more than 85% of the overall
execution time marginalizing the contribution of the other
genetic operators. This number easily passes 99% when we
move to data sets with few hundreds of attributes and few
hundred thousands of records. Such results emphasize one
unique facet of GBML approaches: scalability via exploiting
massive parallelism. More than 99% of the time required is
spent on evaluated candidate solutions. Each solution evalu-
ation is independent of each other and, hence, it can be com-
puted in parallel. Moreover, the evaluation process can also
be parallelized further on large data sets by splitting and
distributing the data across the computational resources.
A detailed description of the parallelization alternatives of
GBML techniques can be found elsewhere [21].

Currently available off-the-shelf GBML methods and soft-
ware distributions [5, 20] do not usually target dealing
with very large data sets. Three different works need to
be mentioned here. Flockhart [12] proposed and imple-
mented GA-MINER, one of the earliest effort to create data
mining systems based on GBML systems that scale across
symmetric multi-processors and massively parallel multi-
processors. The work review different encoding and par-
allelization schemes and conducted proper scalability stud-
ies. Llorà [21] explored how fine-grained parallel genetic
algorithms could become efficient models for data mining.
Theoretical analysis of performance and scalability were de-
veloped and validated with proper simulations. Recently,
Llorà & Sastry [25] explored how current hardware can be
efficiently used to speed up the required matching of so-
lutions against the data set. These three approaches are
the basis of the incremental rule learning proposed in the
next section to approach very large data sets—such as the
prostate tissue classification one.

4.2 The Road to Tractability
NAX evolves, one at a time, maximally general and max-

imally accurate rules. Then, the covered instance are re-
moved and another rule is added to the previously stored
one, forming a decision list. This process continues until
no uncovered instances are left. Llorà, Sastry & Goldberg
[26] showed that maximally general and maximally accu-
rate rules [32] could also be evolved using Pittsburgh-style
learning classifier systems. Later, Llorà, Sastry & Goldberg
[27] showed that competent genetic algorithms [15] evolve
such rules quickly, reliably, and accurately. From these early
works, it can be inferred that approaching real-world prob-
lems, such as the prostate tissue classification and cancer
diagnosis, using GBML techniques may produce the desired
byproduct: proper scalability. We discuss next efficient im-
plementation techniques to deal with very large data sets
using NAX [24].

4.3 Exploiting the Hardware
Recently, multimedia and scientific applications have

pushed CPU manufactures to include support for vector
instruction sets again in their processors. Both applica-
tions areas require heavy calculations based on vector arith-
metic. Simple vector operations such as add or product are
repeated over and over. During 80s and 90s supercomput-
ers, such as Cray machines, were able to issue hardware
instructions that took care of basic vector operations. A
more constrained scheme, however, has made its way into
general-purpose processors thanks to the push of multime-
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(a) Original labeled array (b) Automatically classified array

Figure 3: This figure on the left-hand side presents the original labeled data contained in the P80 array. The
figure on the right-hand side presents the reconstructed image based on the predictions issued by the the
rule set evolved by NAX. Green represent non cancerous tissue spots; red represent malignant tissue spots.

ing frames used by the network infrastructure. Moreover,
this approach also removes the need for sending the actual
rules back and forth between processors—as a master/slave
approach would require—thus, maintaining the communi-
cation to the bare minimum—namely, the fitness. Figure 2
presents a conceptual scheme of the parallel architecture of
NAX.

To implement the model presented in Figure 2, we used
C and the open message passing interface (openMPI) imple-
mentation [13]. Each processor computes which individuals
are assigned to it. Then it computes the fitness and, finally,
it broadcasts the computed fitness. The rest of the process
is unchanged. Except for the cooperative evaluation, all the
processors generate the same evolutionary trace.

4.5 Lists of Maximally General and
Maximally Accurate Rules

One main characteristic of the so-called Pittsburgh-style
learning classifier systems—a particular type of GBML—is
that the individuals encode a rule set [14, 22, 15]. Thus
evolutionary mechanisms directly recombine one rule set
against another one. For classification tasks of moderate
complexity, the rule sets are not large. For complex prob-
lems, however, the potential number of rules required to
ensure accurate classification may use prohibitively large
amounts of memory. The requirements increase even fur-
ther in the presence of noise [23]. Hence, this family of
GBML techniques works very well on moderate complexity
problems [6, 3], but needs to be modified for complex and
large data sets.

A sequential rule learning approach may alleviate the re-

quirements by evolving only one rule at a time, hence, reduc-
ing the memory requirements [9, 4]. This allows maintaining
relatively small memory footprints that makes feasible pro-
cessing large data sets. However, an incremental approach
to the construction of the rule set requires paying special
attention to the way rules are evolved. For each run of the
genetic algorithm, we would like to obtain a maximally gen-
eral and maximally accurate rule, that is, a rule that covers
the maximum number of examples without making mistakes
[32]. NAX (our proposed incremental rule learner) evolves
maximally general and maximally accurate rules by com-
puting the accuracy (α) and the error (ε) of a rule [26]. In a
Pittsburgh-style classifier, the accuracy may be computed as
the proportion of overall examples correctly classified, and
the error is the proportion of incorrect classifications issued.
Once the accuracy and error of a rule are known, the fitness
can be computed as follows.

f(r) = α(r) · ε(r)γ (3)

where γ is the error penalization coefficient. We have set γ
to 18 to guarantee that the evolutionary process will pro-
duce maximally general and maximally accurate solutions.
Further details may be found elsewhere [24]. The above
fitness measure favors rules with a good classification accu-
racy and a low error, or maximally general and maximally
accurate rules. By increasing γ, we can bias the search to-
wards correct rules. This is an important element because
assembling a rule set based on accurate rules guarantees the
overall performance of the assembled rule set. NAX’s efficient
implementation of the evolutionary process is based on the
techniques described using hardware acceleration—section
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4.3—and coarse-grain parallelism—section 4.4. The genetic
algorithm used was a modified version of the simple genetic
algorithm [14] using tournament selection (s = 4), one point
crossover, and mutation based on generating new random
boundary elements.

5. RESULTS
NAX has shown competitiveness in evolving rule sets that

perform as accurately as the ones evolved by other genetics-
based machine learning and non-evolutionary machine learn-
ing techniques. However, NAXs key element is the ability to
deal with large data sets. In this paper, we present prelim-
inary results towards evolving a model capable of correctly
classifying pixels as cancerous or non-cancerous. The origi-
nal array of spots is presented in figure 3(a). Each spot cor-
responds to a different biopsy sample from a patient. The
pixels present in each spot correspond to the epithelial tis-
sue of the biopsy, we supress all other tissue types with
a prior classification filter based on Bayesian Likelihood.[7]
Each pixel of a spot is defined by 93 different metrics ex-
tracted from the processed infrared spectra—as described
in section 3. Finally, each pixel in the array was labeled
with the diagnostic class provided by a human pathologist.
Figure 3(a) presents in green all the non-cancerous pixels
while red identifies cancerous ones.

Our goal with the initial experiments here was to demon-
strate the usefulness of the proposed approach to computer-
aided diagnosis. Our current experimental efforts are plan-
ning mass experimentation on several tissue arrays using the
Tungsten cluster at the National Center for Supercomput-
ing Applications. These initial experiments were conducted
on a dual core Intel Xeon 2.8GHz Linux computer with 1Gb
of RAM. NAX was run using both processors. The training
time to obtain a model describing all the data took less than
ten hours—indicating that very competitive training times
can be achieved by just using more processors. The ob-
tained model was able to correctly classify > 99.99% of the
training pixels correctly. However, these results do not illus-
trate the generalization capabilities of the models evolved
by NAX. Hence, we ran a series of ten-fold stratified cross-
validation runs [34] to measure generalization and test per-
formance of the evolved models. It is important to mention
that tools such as WEKA [34] and other off-the-shelf data
miners were not able to handle the volume of data required
to evolve a model— either due to the large memory foot-
print required or by not being able to provide an accurate
model in a feasible time period. The results of the cross-
validation experiments using NAX correctly classified 87.34%
of validation pixels. Such results are more than encouraging,
because they show a human-competitive computer-aided di-
agnosis system is possible. Another interesting property is
that a few rules classify a large number of pixels—see Fig-
ure 4. Such a result is interesting for the interpretability
of the model, since a small number of rules have a great
expressiveness, and hence may provide valuable biological
insight. Most importantly, they allow us to classify tissue
accurately. Subsequent to this pixel level classification, each
circular spot in figure 3 was assigned as malignant or benign
based on the majority of pixels of he class in the sample. We
were able to accurately classify 68 of 69 malignant spots and
70 of 71 benign spots in this manner. While human accu-
racy is difficult to quantify due to the variation between
persons,a generally accepted anecdotal figure is about 5%
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Figure 4: Performance of the evolved model as a
function of the number of rules used.

error rates. The preliminary results we demonstrate here
could potentially reduce that five-fold to about 1%, provid-
ing a solution to this real-world problem by a combination
of novel spectroscopy and advanced machine learning.

6. CONCLUSION
In this manuscript, we present the application of advanced

genetics-based machine learning algorithms to a real-world
problem of large scope, namely, the diagnosis of prostate
cancer. As opposed to subjective human recognition of dis-
ease in tissue using light microscopy, we employed a chemical
microscopy approach that required extensive computation
but provided a decision without human input. Our devel-
opment of a learning algorithm based on maximally general
and maximally accurate rules was scalable to very large data
sets and parallelized to provide learning and classification
speed advantages. The algorithm was able to classify a ma-
jority of pixels correctly, resulting in overall error rates that
were comparable to human examination, the current gold
standard of care.
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INTRODUCTION
The integration of FTIR spectroscopy with microscopy facilitates recording of spatially resolved 
spectral information, allowing the examination of both the structure and chemical composition of 
a heterogeneous material. While the first such attempt was over 50 years ago,1 present day 
instrumentation largely evolved from the point microscopy detection of interferometric signals 
that developed in the mid-80s.2 The successful coupling of interferometry for spectral recording 
and microscopy for spatial specificity in these systems spurred interest in a variety of fields, 
including the materials,3 forensic4 and biomedical arenas.5, 6 Point microscopy utilizes an 
aperture to restrict radiation incident on a sample and permits the recording of spatially localized 
data. The primary utilities of this form of microscopy lay in acquiring accurate spectra from 
small-size samples, in determining the chemical structure and composition of heterogeneous 
phases at specified points and in building a two-dimensional map of the chemical composition of 
samples. Since the data were acquired at a single point, composition maps could only be 
acquired by rastering the sample. Hence, the approach was termed mapping or point mapping 
and involved as many spectral scans as the number of pixels in the map.  

The use of focal plane array (FPA) detectors for microscopy7, 8 allowed for the acquisition of 
large fields of view in a single interferogram acquisition sweep. The multichannel detection 
enabled by array detectors was similar to the concept of recording images with charge coupled 
devices in optical microscopy; hence, the approach was termed imaging.  The unique advantages 
of observing an entire field of view rapidly permitted applications that allowed monitoring of 
dynamic processes, spatially resolved spectroscopy of large samples or many samples and 
enhancement of spatial resolution due to retention of radiation throughput that was lost in point 
microscopy systems due to diffraction at the aperture. Just as for the previous generation of 
microspectroscopy instruments, applications  rapidly followed in the materials9 and biomedical 
fields.10-14 Research activity in this area can be divided into three major categories: 
instrumentation and sampling methodologies, applications and data extraction algorithms. In this 
manuscript, we review key advances and recent developments in the context of biomedical 
imaging. We do not provide comprehensive overview but selectively highlight certain features of 
importance for cancer-related imaging. Last, we focus on one emerging application area, namely 
tissue histopathology, and provide illustrative examples from our laboratory indicating the 
integrative nature of the three in developing protocols. 
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INSTRUMENTATION, SAMPLING AND DATA HANDLING TECHNIQUES

Instrumentation 
Since imaging is largely based on new detectors with unique performance characteristics for 
spectroscopy, efforts in instrumentation have largely focused on the efficient integration of FPA 
detectors with interferometers. Due to the size, different electronics and unique noise 
characteristics of FPAs, an optimization of data acquisition methodology was a primary activity 
in the initial time period of availability of instrumentation. The first rational attempt at 
understanding performance and optimizing the data acquisition process revealed the unique noise 
characteristics that limited the first generation of array detectors.15  Briefly, this paper established 
that the general behavior of FTIR spectrometers is generally held for imaging spectrometers but 
the detector may serve to limit the applicability of established practices in IR spectrometry. An 
explicit optimization of the data acquisition time revealed several strategies for speeding data 
collection for both the step scan and rapid scan mode.16 The first example of rapid-scan FTIR 
imaging17was conducted using asynchronous sampling, followed by descriptions of 
synchronously triggered sampling and generalized methodologies18 that could use any detector at 
any modulation frequency using post-acquisition techniques. Advances in detector technology 
have now allowed for rapid scan imaging to become routine for large FPA detectors, while 
innovative new detectors have been developed (first by PerkinElmer) that trade off a large 
multichannel detection advantage of arrays against the speed of smaller detector arrays to 
provide a very high performance instrument.19

At present, rapid scan imaging has become the mode of choice for most manufacturers and 
detector sizes have proliferated from the classic 64 x 64 format to range from 16 x 1 to 256 x 256 
formats (see figure 1). While the smaller detectors require rastering to image most samples and 
can provide data of higher quality more efficiently, larger detectors are generally employed for 
their large field of view and are useful for studying dynamics. It is interesting to note that the 
linear array approach has an entirely different detector technology and considerations for 
electronics compared to the two-dimensional FPAs. While it is beyond the scope of this article to 
discuss the differences, the use of “macro” electronics that are offset from the actual detector and 
AC mode of operation are the two major differences that affect data. Consequently, comparisons 
in performance are slightly more complicated. On the large format FPA front, the latest advance 
seems to be a detector developed jointly by NIH and FBI personnel in 2005. The detector can 
operate at 16 KHz for 128 x 128 pixel snaps (Bhargava, Levin, Perlman and Bartick, 
Unpublished). This is in the speed regime of single element detectors. Hence, the development 
can truly lead to the acquisition of an entire image in a single interferometer mirror sweep in the 
same time that it takes to acquire 1 spectrum with a benchtop IR spectrometer. To handle the 
large data output, we designed on-chip co-addition and various corrections. We believe that 
similar detector systems, operating in a fast regime and integrating processing with electronics, 
are likely to be the technology of tomorrow for FTIR imaging.  

The wide variety of instrumentation makes comparisons difficult, especially when manufacturers 
provide different specifications for instruments. We have proposed a comparison index for these 
systems based on performance per unit time. Recognizing that spectral resolution, time for 
scanning, data processing (e.g. apodization) and resultant image size are the primary 
determinants of performance, a measure can be formulated to describe performance. For a fixed 
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data processing scheme (filtering, apodization etc.), the time taken to acquire 1 megapixels of 
data for 8 cm-1 resolution at a signal to noise ratio (SNR) of 1000:1 is found to be a good 
measure. We would like to emphasize that the performance is the performance of the entire 
imaging spectrometer and not due to the detector alone. Efficient coupling of the interferometer 
and optimization of the optical train will both affect performance as will the correct setup of the 
experiment. This index also does not consider the ease of use or “user-friendliness” of systems. 
These are other important considerations and must also be considered by organizations interested 
in FTIR imaging technology. The issue of time resolution for acquiring data is one such concern. 
The first approach is the kinetics approach in which the interferometer is repeatedly scanned and 
imaging data sets are sequentially acquired as quickly as possible. Clearly, rapid scan is favored 
and the availability of fast readout detectors is mandatory for fast events. The limit to this 
method is the readout speed of the array (frames in ms) as interferometers can generally be 
scanned fast enough and the integration time required is typically in the tens of microseconds 
regime. An example is shown in figure 2 to demonstrate applicability in monitoring 
polymerization kinetics. 

Though rapid scan imaging has displaced the step-scan mode in most new instrumentation, a 
very important application of the step-scan approach remains in time-resolved imaging.20-22

Briefly, the method is applicable to systems that can be repeatedly and reproducibly excited and 
relax back to their ground state. At each mirror retardation, the FPA is repeatedly triggered to 
acquire data. At the same time, the sample is excited once and the dynamics of excitation and 
decay of the excited state are monitored. Mirror stepping, data acquisition and sample excitation 
are all precisely synchronized. Figure 3 demonstrates the synchronization. Time resolved FTIR 
imaging was first demonstrated using polymer-liquid crystal composites. Examples of the types 
of data that may be obtained are also shown in figure 3. Last, the technology was extended to 
provide significantly higher time resolution than could be obtained by the electronics of the 
detector alone.23 While FPA detectors are slow compared to single point detectors used in 
conventional FTIR spectroscopy, the cause is the need to read out data from several thousand 
pixels and not from the need to record data from all pixels. Hence, by staggering the data 
recording time over multiple sample excitations, higher temporal resolution may be obtained. 
With current detectors, a time resolution of ~30 �s should be possible. 

Sampling 
Interferometer Issues 
Among the sampling configurations, the first clearly was the optimization of the microscope for 
transmission and sampling. Unexpected issues were encountered in initial devices. For example, 
the detector for the mono-wavelength laser provides a fringe pattern to allow for tracking mirror 
retardation. The signal from this laser is measured by a small detector located at the center of the 
beamsplitter (to minimize errors) with an arm that extends out to the edge. When imaged onto 
the FPA, this laser detector leads to a pattern with low signal levels. Hence, the field of view is 
not uniform, leading in turn, to lower signal to noise ratios (SNR) for the affected region. Many 
manufacturers, hence, have re-designed their spectrometers for imaging use. Another 
manufacturer has avoided this issue by aligning their microscope to sample only the unaffected 
part of the beam. Since the non-imaging spectrometer did not require imaging and the 
interferometer was simply coupled to a microscope, these issues were slowly addressed.
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Sampling Modes: Transmission, Transmission-reflection, Reflection and Attenuated Total 
Reflection 
A vast majority of studies report the use of transmission sampling. Other major developments 
have been the incorporation of reflective slides,24, 25, 26 the integration of ATR elements for both 
microscopy and large sample imaging, integration of ATR technology with various sample 
forming accessories, grazing angle accessories and multi-sample accessories. Reflective slides 
actually result in reflection-absorption that allows the beam to sample the signal twice, though 
with a different phase and lower signal due to half the objective being used for transmitting light 
to the sample and the other half being used to acquire light from it. A detailed theoretical 
understanding of the confounding effects has not been published, though an example of the 
possible data correction algorithm has been reported. ATR imaging is also highly prevalent and 
available as attachments to conventional imaging microscopes, using the sample chamber of the 
spectrometer and using it as a solid immersion lens.27 We discuss examples of ATR imaging next.  

ATR
In the Attenuated Total Reflection (ATR) mode, an IR transmitting crystal of precise geometry 
of high refractive index is employed as a solid immersion lens. Light is totally reflected at the 
sample-crystal interface and an evanescent field penetrates into the sample to provide the 
interaction to be observed using the traveling wave. Since the sample interaction is largely 
determined by the lens and not by the sample, precise and controlled depth of interaction is 
available. The sample, however, needs to be in good contact to allow efficient coupling with the 
evanescent wave. ATR imaging allows users to work with relatively thick sample sections that 
do not require much sample preparation expertise or time. The first use of ATR imaging was 
reported by Digilab in analyzing large samples that were not sectioned, as for transmission. ATR 
imaging microscopy was demonstrated soon after,28 followed by other novel accessories. There 
were other unpublished attempts that one of the authors is aware of: In 1999, for example, 
Snively et al. (personal communication, unpublished) demonstrated imaging data from an 
inverted ZnSe prism acting as a single bounce ATR. Soon after, we employed a Ge crystal but 
found the signal to noise ratio of the imaging system of that time to be very poor. In addition to 
the ease of sample preparation, another major advantage of ATR imaging lies in improving the 
limited spatial resolution of transmission microscopy.29 The authors assessed that they were able 
to achieve a spatial resolution of 1�m with a Ge internal reflection element  

Both micro and macro sampling has been extensively utilized.30 A spatial resolution of 3-4 �m
using a Ge ATR element was claimed based on more stringent criteria than used previously.29 Ge, 
ZnSe and diamond30 crystals have been the materials of choice for most applications. In 
particular, Kazarian and co-workers have extensively employed ATR-FTIR imaging for various 
applications including drug release; polymer/drug formulations and biological systems.30-33 The 
same group has provided other innovative sampling configurations for specific experiments, 
including a compaction cell that allows compaction of a tablet directly on a diamond crystal with 
a subsequent imaging.34 The changes in the distribution of a tablet consisting of hydroxypropyl 
methylcellulose (HPMC) and caffeine upon contact with water were studied. In this manner,  
conventional dissolution measurements were combined  with a concurrent assessment of the 
compacted tablet structure.35 As opposed to the organic solvent-polymer dissolution experiments 
reported earlier, this configuration allows for easy handling and imaging of water-induced 
dissolution. The setup can also provide high throughput analysis of materials under controlled 
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environments.36 Microdroplet sample deposition system was combined with a humidity control 
device to image about 100 samples deposited on the surface of an ATR crystal simultaneously. 
The approach was extended to 165 samples and were reported to study parallel dissolution of 
formulations.37

Multi-sample Accessories and Sampling 
While imaging the structure of materials has been the primary focus of FTIR imaging, a number 
of applications utilize the imaging of multiple samples. The first examples were from the field of 
catalyst research.38 Typically 2-12 samples could be imaged and analyzed under the same 
conditions. High throughput validation or method development was the primary goal in these 
studies. Tissue microarrays (TMAs) provide the same function in biomedical imaging. TMAs 
consist of tens to hundreds of samples arranged on a grid format. This allows for easy 
visualization of the structure and classification accuracy across many patients and the statistical 
measures needed for rigorous validation. The primary utility of the multisample image in this 
case is to provide wide-ranging sampling and convenient archiving or data storage, not 
necessarily to provide a higher throughput.14, 39 With the appropriate geometry, many samples 
can be imaged to understand their dynamics in a concerted fashion. To accommodate the 
samples, the field of view is often expanded. This results in a lower spatial resolution. For 
imaging multiple samples, though, the spatial resolution can be conserved but temporal 
resolution is restricted. 

BIOMEDICAL APPLICATIONS
Bone
Bone has been the tissue studied most by FTIR imaging. Bone composition changes with 
development, environment, genetics, health and disease, is amenable to imaging at the resolution 
length scale of imaging and has a limited chemical composition that is characterized using IR 
spectroscopy.40  For almost 30 years until the late 1980s,41 bone structure was studied using 
single element detectors in FTIR spectrometers. Typically, ground bone was analyzed using the 
conventional KBr pellet method. This pellet method obviously destroyed local structures, 
precluding an understanding of molecular variations due to disease. Nevertheless, it was 
sensitive to chemical composition and did provide useful information. With microscopy and now 
with FTIR imaging, sample integrity is maintained and ability to acquire spectral information at 
anatomically discrete sites is possible. From the resulting spectra, several important pieces of 
information can be obtained. For example, a) relative mixture composition of hydroxyapatite and 
collagen by calculating the ratio of the integrated �1, �3 phosphate and amide 1 (mineral: matrix 
ratio), b) carbonate substitution by calculating the ratio of carbonate/phosphate ratio from the 
ratio of integrated �2 carbonate peak (850-900 cm-1) and �1, �3 phosphate contour (900-1200 cm-

1), c) crystallinity of the mineral phase from the ratio of 1030/1020 peak intensity.42 These assays 
illustrate several quantities important to bone research and disease diagnoses that can be readily 
performed. Though a complete discussion is available in the reference40, 42-44, we pick three 
illustrative examples demonstrating the applicability in disease and in research. 

IR spectral analysis of healthy and disease bone has been reviewed by Boskey et al.42 with 
particular emphasis on changes in bones composition, physiochemical status of mineral and 
matrix of bones during osteoporosis and the effect of therapeutics on these parameters. 
Osteoporosis or porous bone is a bone disease characterized by low bone mass and structural 
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deterioration of bone tissue. This leads to bone fragility and an increased susceptibility to 
fractures, especially at the hip, spine and wrist. FTIR images of the mineral content and 
crystallinity in trabecular bone of normal and osteoporotic samples clearly depicts that the 
trabeculae in diseased tissue are thinner. Moreover, the mineral/matrix ratio in osteoporotic bone 
is significantly reduced, whereas crystallinity is increased. These advances demonstrate the 
potential and applicability of the technique to characterize diseased tissue. Bone mineral changes 
between a healthy mouse model and Fabry diseased (lipid storage disease) mouse model were 
also analyzed in which globotriaosylceramide (Gb3) accumulates in tissues.43 No significant 
differences in the bone mineral properties were observed between Fabry and healthy mice, which 
might reflect the similar lack of major bone phenotype in human patients with Fabry’s disease 
and may also be related to the developmental age of these animals. The study provides an 
example of the applicability to laboratory research. 

Calcified tissue in biopsies from adults with osteomalica has been studied.44 Osteomalacia results 
in a deficiency of the primary mineralization of the matrix, leading to an accumulation of osteoid 
tissue and reduction in bone’s mechanical strength. A decrease in trabecular bone content with 
absence of changes in matrix or mineral is noticed when iliac crest biopsies of individuals with 
vitamin D deficient osteomalacia are compared to normal controls. These findings support the 
assumption that, in osteomalacia, the quality of the organic matrix and of mineral in the centre of 
the bone does not vary, where as less-than optimal mineralization occurs at the bone surface.

Brain
Monkey brain tissues were one among the first tissues examined by using FTIR imaging.12

Lately, the applications have experienced a renaissance with applications to the human brain. 
Grossly, brain can be divided into two types of matter, namely gray matter and white matter. 
These names derive simply from their appearance to the naked eye. Gray matter consists of cell 
bodies of nerve cells while white matter consists of the long filaments that extend from the cell 
bodies - the "telephone wires" of the neuronal network, transmitting the electrical signals that 
carry the messages between neurons. A visualization of the two compartments formed the first 
demonstrative application of FTIR microspectroscopic imaging. 

FTIR imaging and multivariate statistical analyses (unsupervised hierarchical cluster analysis) 
were applied alongwith histology and immunohistochemistry in an animal model having 
Glioblastoma multiform (GBM).45 GBM is a highly malignant human brain tumor that is 
considered to be the one of the most difficult to treat effectively.46 Authors were able to identify 
the tumor growth as chemically distinct from the surrounding brain tissue. The distribution of the 
absorbance of amide I in images highlighted high concentrations of proteins in the corpus 
callosum and regions of basal ganglia for healthy brain. Low absorbance was generally observed 
in the cortex, whilst a higher absorbance was observed at outer layer of the cortex. For a GBM 
bearing animal, the highest absorbance was found at the tumor site. In contrast to healthy brain, a 
lower absorbance of the amide I band was observed at the corpus callosum when compared to 
that in the cortex and the caudoputamen. The study demonstrates a powerful application of 
simple analyses that can indicate disease. It also highlights the multitude of spatial and spectral 
clues that can be use to diagnose or understand the disease. 
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In addition to primary disease sites, diagnoses metastatic spread from various cancers was also 
reported.47 A multivariate classification algorithm was used to distinguish normal tissue from 
brain metastases successfully and to classify the primary tumor of brain metastases from renal 
cell carcinoma, lung cancer, colorectal cancer, and breast cancer. In the cluster averaged IR 
spectra from a brain metastasis of renal cell carcinoma, the main spectral differences were 
observed for the three tissue regions in the region from 950 to 1200 cm-1 and from 1500 to 1700 
cm-1. Band intensities of 1026, 1080 and 1153 cm-1 are at maximum in the spectrum of black 
cluster and minimum in the spectrum of light gray cluster. The comparisons of the IR spectra of 
normal brain tissue and brain metastases of lung, breast cancer and colorectal cancer were made 
and found that these spectra do not contain spectral features at 1026, 1080 and 1153 cm-1 that are 
indicative of the presence of glycogen. It was concluded that these aforementioned spectral 
features would be considered as a biomarkers for brain metastases of the primary tumor renal 
cell carcinoma. In addition to these three bands, the spectral differences were observed for the 
bands at 1542 and 1655 cm-1, owing to the presence of amide I and amide II vibrations. It is clear 
from the results that the maximum protein concentrations correlate with minimum glycogen 
concentrations in the IR image. However, the protein and glycogen properties evident in the IR 
image are not visible in the unstained cryosection. It is noteworthy that simple univariate 
analyses provide the end clues to the disease. Even on application of multivariate techniques, the 
most prominent and easy to understand biomarkers of disease are those defined by conventional 
spectroscopic knowledge as being important for identification, namely, features and their 
absorption.

In the cluster–averaged IR spectra of white matter from the three normal brain tissue samples, 
intense bands at 1060, 1233, 1466, 1735, 2850 and 2920 cm-1 due to the high lipid concentration 
in white matter were noticed. Intensity changes were due to inter-sample and patient to patient 
variances of the same tissue type. In addition, cluster-averaged IR spectra of a brain metastasis of 
(renal cell carcinoma, breast cancer, lung cancer, and colorectal cancer) and gray matter of 
normal brain tissue were compared after baseline subtraction and then normalization with respect 
to the amide I band. Significant differences in the band positions, intensities and area were 
observed between these samples which were then used as potential candidates to differentiate 
normal and tumor tissue and for the identification of the primary tumor. Here, authors used only 
eight spectroscopic features for LDA model. They were able to classify correctly for three out of 
three normal brain tissue and 16 out of 17 brain metastases samples. Hence, though univariate 
analyses and features provide useful recognition, their integration into a multivariate algorithm 
provides for automated recognition of clinical importance. It may also be argued, however, that it 
is questionable whether the small numbers of samples employed represent a true performance 
condition for the algorithm or are simply reflective of bias arising from the clinical setting or 
sample sources. The advent of faster imaging approaches and advanced sampling techniques like 
TMAs can allow for larger numbers of samples to be analyzed and such doubts about the validity 
of studies be put to rest. 

Similarly, tissues from rat Glioma models have been characterized and used to discriminate 
healthy from tumor  sections using principal component analysis and K-means.48 Pseudo color 
maps reported were constructed on 8-means clusters, where each cluster is consisting of similar 
spectra. The lipids/protein ratio (1466/1452 cm-1) was found to be decreased and the band at 
1740 cm-1 became weak and almost vanished as compared to the corresponding bands in the 
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healthy tissue. In addition to the above mentioned differences, significant differences between 
healthy and tumor affected tissue were observed in the finger print region. In the healthy tissue, a 
weak band at 1172 cm-1, representing the stretching mode of C-O groups were observed. 
Reduced intensity as well as shifting of peak to 1190 cm-1 was noted for tumor and surrounding 
tumor spectra. Tumor tissue was observed to contain a decreased intensity of the asymmetric 
phosphate stretching and C-C stretching and an increased intensity of the symmetric phosphate 
stretching when compared to the healthy tissue. Variations in lipid features (methylene and 
methyl stretching) were also observed. The major point here is that the entire spectrum contains 
numerous points of difference between healthy and diseased tissue. Results were found to be in 
agreement with those obtained from pathology.49 The structural difference around the tumor was 
noted, which could be ascribed to the peritumoral aedoma observed during glioma development. 
An increase in the permeability of the blood-brain barrier and aggravation in the mass effect of 
tumors are the rationale for aedoma, which is associated with brain tumor. Fundamental 
understanding can be enhanced by a complete understanding of the spectral differences but 
prediction algorithms need only a few measures of the spectral data to be effective.  

Breast  
Two major applications in breast tissue deal with complications arising from artificial alterations 
of the tissue and the evolution of cancer. While breast augmentation by implants is highly 
prevalent, its complications have been discussed more recently. On the other hand, the 
conventional method for diagnosing and evaluating the prediction of breast disease is a 
histopathological examination of biopsy samples, a practice that has some shortcomings. For 
breast implants, a major question is the containment of filling material as its leakage can lead to 
potential diseases. The silicone gel in implants is very different chemically from surrounding 
tissue and its presence in tissue sections indicates a definite leak from the implant either due to 
material failure as a consequence of aging. A spectroscopic image50 generated from the 
asymmetric stretching modes of the methyl groups attached to silicon in the gel allowed for the 
examination of silicone in the tissue. Due to the unique chemical contrast employed in FTIR 
imaging, such presence can be discerned within the tissue, even when optical microscopy 
contrast was poor. An example of presence of Dacron (a commercial name for poly(ethylene 
terepthalate)) fixative patch threads in the breast tissues was shown.50 It was noted that the 
technique is capable of rapid analysis within minutes of sectioning the tissue.  

A few reports have also applied FTIR imaging for diagnosing breast diseases. Breast tumor 
tissues were characterized by both FTIR Imaging and point mapping techniques and advantages 
over the other were evaluated.51 Similar comparisons had previously been reported for polymeric 
materials, analyzing both static and dynamic samples.52 Comparison images from the two 
methods, imaging data provided a clearer structure in the tumor area than the data obtained from 
point mapping. Since breast tumor cells are ~10 μm in diameter, point mapping data (with an 
aperture of 30 μm) would always contains the spectrum of tumor cells as well as from the 
contributions of other components surrounding the cells. The study clearly indicated that the 
conventional point mapping approach can fail to detect a small number of malignant cells due to 
its poor resolution capabilities. Nevertheless, the contamination problem, i.e., the spectral 
contributions of other components surrounding the cell is found to be less severe in case of 
ductal carcinoma in situ (DCIS). The study illustrates the need for matching the appropriate level 
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of spatial resolution to the task. While the 30 �m resolution may be appropriate for some 
applications, it was clearly insufficient for detecting smaller numbers of cells. 

Artificial network and K-means cluster analysis have also been employed for the classification of 
FTIR imaging data from normal and malignant immortalized human breast cell lines.53 Normal 
cells, carcinoma cells, mixed normal and carcinoma cells were used. Differences in the spectral 
backgrounds between the training and test data were observed, which confounds the 
reproducibility of recorded spectra and, thus, causes the classifier to fail. Using rejection 
thresholds in the application of the ANN classifier was reported to be helpful in identifying 
doubtful classifications. Another study54 reported imaging fibroadenoma, a benign breast tumor. 
Data were evaluated using unsupervised cluster analysis by utilizing two spectral regions, 
namely 1000-1500 and 2800-3000 cm-1. The distribution of four main tissue components- 
epithelium, retro nuclear basal epithelial regions, mantle zone and distant connective tissue were 
visualized. The spectral features from each component were discussed in detail. Furthermore, 
comparing epithelia from fibroaedenoma and DCIS, the authors determined that subtle 
distinctions between the IR characteristics of these two are reproducible. The initial study used 
tissue from a single patient. 

The work was recently extended55 to diagnose benign and malignant lesions from 22 patients. 
The study utilized only spectra from well-defined tumor areas owing to the heterogeneity of 
tissues. Based on the cluster analysis and on comparison with the H & E images, four classes of 
distinct breast tissue spectra were identified - fibroadenoma (FA), ductal carcinoma in situ 
(DCIS), connective tissue and adipose tissue. Further, ANNs were developed as an automated 
classifier to differentiate the four classes. All spectra of connective tissue and adipose tissue were 
classified correctly, where the spectral features are clearly different from each other and from 
tumors as well. Differentiating fibroadenoma from DCIS was more difficult. A toplevel/sublevel 
strategy was further applied and was able to differentiate 93% between fibroadenoma and DCIS 
spectra by employing principal component analysis. From the mean spectra, it was found that the 
DCIS has more lipid content than the fibroadenoma. Invasive ductal carcinoma (IDC) could not 
be well characterized due to contamination from surrounding cells, illustrating the limited spatial 
resolution.

Cervical Cancer 
The cervix is the lower part of the uterus (womb) in which two major types of cancers occur: 
squamous cell carcinoma and adenocarcinoma. About 80% to 90% of cervical cancers are 
squamous cell carcinomas, and the remaining 10% to 20% are adenocarcinomas. Less commonly, 
cervical cancers have features of both squamous cell carcinomas and adenocarcinomas. These 
are called adenosquamous carcinomas or mixed carcinomas. Typically, the Papanicolaou (Pap) 
test checks for changes in the exfoliated cells of cervix to find the presence of any infection, 
abnormal (unhealthy) cervical cells, or cervical cancer. FTIR spectroscopy, micro spectroscopy 
and FTIR imaging have been widely utilized to study cervical cancer and to perform the same 
function using computer analyses of spectra.26, 56-60 While the first reports in diagnosing cervical 
cancer are now generally not regarded as leading to solutions,56 two groups have provided 
definitive proof of the potential of IR spectroscopy by careful microscopy studies.26, 57, 45, 59, 60

While FTIR images of the amide I and �asy PO2
- bands with H&E stained image were compared 

and only a rough correlation with the pathological features or cell types were obtained, cluster 
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maps of two, five and eight clusters resulting from UHC analysis for the whole spectrum 
demonstrated good segmentation. In five clusters, most cell types are apparent including 
superficial (1), intermediate (2), parabasal (3), and connective tissue (5) upon correlation with 
the stained image. As in univariate images, the connective tissue region (5) is split in to two 
clusters. Furthermore, by comparing between the UHC analysis of the whole spectrum and only 
the amide I region, authors demonstrated that minimizing the spectral region for analysis and 
using fewer clusters does not lead to the loss of useful information. Both univariate FTIR and 
multivariate images of the sample with several endocervical ducts within the connective tissue 
were shown. These endocervical ducts lined with columnar endocervical cells were apparent in 
all those images, in particular even with two clusters.

Cultures derived from cervical cancer cells (HeLa) are one of the most popular model systems 
and have been studied using FTIR imaging.61 The cells were directly grown as sparse 
monolayers onto low-e slides. FTIR image of amide I band region was shown; where large 
differences in spectral intensities associated with the cells were observed even though these cells 
are from a homogeneous and exponential cell culture. Cluster analyses of normalized spectra 
shows distinct differences that were not appreciated in the univariate image. Similarly,62 IR 
imaging with fuzzy C- means clustering and hierarchical cluster analysis were utilized to study 
the thin sections of cervix uteri encompassing normal, precancerous and squamous cell 
carcinoma. These studies demonstrate that IR imaging, in combination with multivariate 
techniques, is capable of segmenting cervical tissues in a manner that is comparable to H&E 
stained image differentiation and is significantly more sensitive in terms of the chemical 
composition of the cells – whether it be due to metabolic or disease reasons. 

Prostate 
Prostate cancer is the most prevalent internal cancer in the US.63 Hence, its pathologic diagnosis 
and correct interpretation of disease state is crucial.64 FTIR imaging has been proposed as 
solution that can potentially help pathologists by providing an objective and reproducible 
assessment of disease in a manner that is easily understood by clinicians. It is also a good model 
system for the development of FTIR imaging protocols. We first review progress in the field and 
then describe efforts in our and collaborator’s laboratories towards formulating a practical 
algorithm for prostate cancer pathology. While a number of studies examined human prostate 
tissue with IR spectroscopy65-68  microscopy approaches have recently been extensively utilized 
to study both fundamental properties of prostate tissue and to determine structural units in 
normal and disease states.69-75 An understanding of the tissue is now emerging as a result of these 
studies. While the fundamental properties of the tissue are being examined, we have focused on 
developed statistically validated diagnostic methods. 

We have utilized high throughout imaging with the express purpose of correlating spectra to 
clinical practice.39, 64, 76 It is instructive to first examine the approaches of some previous studies 
and then describe our approach in some detail. A variety of techniques have been reported for 
analyzing prostate tissue, including unsupervised multivariate data analysis techniques such as 
agglomerative hierarchical clustering (AH), fuzzy C-means (FCM), or k-means (KM) clustering 
to construct infrared spectral maps of tissue structures.77 The results from these multivariate 
techniques confirmed the standard histopathological techniques and found out to be helpful for 
identifying and discriminating the tissues structures. Agglomerative hierarchical clustering was 
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found to be the best method among the cluster imaging methods in terms of segmenting the 
tissue. While these techniques comprise one end of the approach in using large spectral regions 
and completely objective methods, the other extreme has also proven to be useful. In the second 
paradigm, careful examination of the spectral data yields some measures that prove useful. For 
example, the ratio of peak areas at 1030 and 1080 cm-1, corresponding to the glycogen and 
phosphate vibrations respectively were utilized as a diagnostic marker for the differentiation of 
benign from malignant cells.69 Authors summarized that the use of this ratio in association with 
FTIR spectral imaging provides a basis for estimating areas of malignant tissue within defined 
regions of a specimen. While it may be argued that the former is not based on clinical knowledge 
and is more suited for discovery, it also involves the choice of selecting specific number of 
clusters and their subsequent interpretation. The latter is based on a single parameter whose 
utility for universal diagnoses remains to be tested. Nevertheless, these studies indicate that both 
approaches provide information about the tissue that is useful.

Our approach has used elements from both pattern recognition and spectroscopic analyses of 
univariate measures. 39, 76 In all cases, one starts with the acquired imaging data (figure 4). Since 
the data set is large (typically 10-1000 GB), it is advisable to reduce the dimensionality of data 
using some numerical procedure. Compression algorithms, principal components analyses or 
simply storing only the information needed for classification (if the algorithm is known) is useful.  
We sought expressly to relate the recorded IR imaging data to clinical knowledge base. Hence 
we started with a model that is derived from clinical practice. Clearly, the approach limits the 
discovery of new knowledge but it assures the clinician that all quantities of importance for 
diagnoses will be considered. The acquired data is labeled with known cell identity or disease 
states.  These pixels are best identified by a combination of very careful manual labeling and test 
for absorbance fidelity.78 Spectra from the label regions are employed via average values, 
medians and standard deviation analyses to determine a set of spectral features that are 
descriptive of the major features of all spectra. We first note that the characteristic IR absorbance 
spectra of ten histological classes comprising prostate tissue look similar. Though small 
differences in spectral features were observed at many frequencies, summary statistics are 
limited in their examination of spectra for classification. Further, the small differences indicate 
that noise and biological variability may render univariate measures less reliable. The large 
number of classes usually implies that univariate analyses cannot distinguish all histological 
classes present in the tissues and hence the need for multivariate analyses is apparent. Here the 
similarity of the spectral features for all classes works in our favor. Very similar baseline points 
are obtained from an analysis of all spectra and only subtle feature differences are noted to 
distinguish the various class spectra. Hence, unknown spectra can be processed in the same 
specified manner, without introducing any bias. Each of these features is termed a metric to 
denote that it is a useful measure of the spectrum. Individual metrics can allow segmentation of 
various tissue types if they are sufficiently different in a sampled population. 

We then employ the equivalent of a t-test in that the overlap between the absorbance 
distributions of metrics is determined and equated to the error in prediction. The metrics are 
arranged in the order of increasing overlap. Hence, we have an ordered set that differentiates at 
least two classes. To obtain overall accuracy, we employ a modified Bayesian algorithm to 
provide the probability of each class for every pixel. This fuzzy result is employed to determine 
the area under the curve (AUC) of a receiver operating characteristic (ROC) curve. The ROC 
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curve is built from accepting the probability of each class at an increasing threshold that varies 
between 0 and 1. For optimized threshold values, the fuzzy classification is turned into a 
classified image, where each pixel is assigned a distinct class. We note that the method 
incorporates analysis of all spectral features, a selection of the best features based on statistical 
analysis of data and an optimal prediction of the class of each pixel based on an objective 
selection rule from the fuzzy classification. The method is very powerful in that it employs 
spectral features that are ordinarily employed by spectroscopists as metrics, which permits a 
spectroscopic analysis of the basis of decision-making. Further, the method explicitly obtains the 
fuzzy rule data for final classification. The value of the rule data for each class is actually the 
probability of belonging to the class without consideration for the prior prevalence of the class. 
Hence, the method can allow direct comparisons between performances for different classes. The 
dependence of the process on various experimental parameters has also been reported. 

The complication inherent in translating the results from small data set of patients to clinical 
applications is well recognized in the spectroscopy community. The variability in data, arising 
from variations within and between patients, sample preparation and handling, is likely to 
provide noisy estimates of performance. Hence, statistical stability may be obtained by 
examining a large number of samples. Similarly, large number of patients may be employed to 
provide calibration models, likely improving the robustness of the developed algorithm. We have 
described a high throughput sampling method from tissues.14, 39, 76 Briefly, the approach uses a 
combinatorial sampling of tissue type and pathology to first acquire small sections of tissues 
from large archival cases. These small sections are arranged in a grid pattern and placed on the 
same substrate. The sample is termed a tissue microarray to reflect the similarity with cDNA 
microarrays. For spectroscopic imaging and the development of automated algorithms, the 
approach represents a large number of cases that can be used both for accurate prediction 
algorithm building and for extensive validations. The same approach is likely to prove useful for 
extensions to determining pathology. Figure 5 demonstrates the typical workflow of a validation 
algorithm and methods used for statistical comparison. We strongly suggest a variety of methods 
for measuring performance as each method has its own advantages and disadvantages. For 
example, summary measures from ROC curves only provide information about accuracy but do 
not provide which class the inaccuracies arise from. Similarly, confusion matrices provide cross-
class information but do not provide global performance measures in the mold of ROC curves. 

OUTLOOK
FTIR imaging has experienced rapid growth in the past 10 years and is increasingly being 
applied to biomedical tissue, especially for the analyses of cancer. The major trends emerging in 
instrumentation include faster detectors and novel modes of data collection (e.g. time –resolved 
imaging), of sampling (e.g. ATR) and application areas. For biomedical samples, the information 
content is quite rich and is often available through simple univariate analysis. For more complex 
applications, e.g. cancer diagnoses, the data acquisition, sampling and data analyses must be 
integrated in a coherent manner to provide a practical solution. We anticipate that the technology 
and its application to biomedical problem will continue to grow with the cooperation of 
instrument manufacturers, applications scientists, numerical methods developers and 
communities that can utilize the information effectively, e.g. pathologists or surgeons. 
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ABSTRACT 
 
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular 
selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining 
high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we 
apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, 
disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological 
patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, 
subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in 
vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we 
report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant 
and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first 
demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. 
Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, 
we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation. 
 
Keywords:  Breast Cancer, FT-IR Spectroscopy, Hyperspectral, Histopathology, Imaging, Diagnostics, MNF Transform 
 
 

1. INTRODUCTION 
 
As histologic analysis of biopsied tissue forms the standard in definitive diagnosis of breast lesions, it is estimated that 
more than 1.6 million women undergo breast biopsies each year in the US alone. Biopsy samples are fixed to ensure 
tissue stability1 and then sectioned for staining.2 Microscopic examinations of stained tissue sections by a trained 
pathologist are the gold standard used in diagnosing breast cancer.3 Unfortunately, these evaluations are time consuming4 
and do not always lead to an unequivocal diagnosis. For example, a study of 481 breast cancer patients from 1982-2000 
at a regional cancer center indicated that 73% of ductal carcinoma in situ (DCIS) patients are referred by a general 
pathologist to an expert pathologist for review.5 After review, 43% of these cases received different treatment 
recommendations. Another study found that 52% of cases referred to a multidisciplinary tumor review board received 
different surgery recommendations.6 Clearly, the diagnostic process is sub-optimal. Rapid, objective second opinions are 
desirable. The use of emerging biological understanding and technologies for diagnoses could provide additional 
information in tumor evaluation and help make accurate therapy decisions. Further, it is likely that the morphologic 
parameters of current diagnoses are insufficient and additional information must be added. This information is typically 
biochemical in nature. For example, staining for human epidermal growth factor receptor 2 (HER2) can identify 25-30% 
of breast cancers.7 Such examples of success, unfortunately, are uncommon for cancers in complex tissues. Hence, 
alternative methods are urgently required to aid diagnostic pathology. 
 
One such means is the use of molecular spectroscopy. For example, Fourier transform infrared (FT-IR) spectroscopy is 
traditionally used for molecular identifications and biomolecular structure elucidations, but is not currently applied in 
clinical pathology.8 An IR spectrum provides a unique molecular fingerprint with a quantitative measure of the 
molecular bonds present in an examined material.9 Thus it should give a reproducible measurement of tissue 
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composition. Tissue, however, is microscopically heterogeneous and the measurement of chemical composition must be 
made in the context of knowledge of tissue structure (histology).10 The recent emergence of FT-IR imaging couples 
spectroscopy and microscopy to permit rapid acquisition of spectra from tens of thousands of pixels at a high spatial 
resolution. Each pixel (spectrum) typically contains thousands of data points in the mid-IR wavelength region (2-
12μm).11 Automated classification can then be employed for rapid computerized tissue image analysis, as has been 
practiced in both the spectral processing and image processing communities. The end goal of the measurement and 
associated data processing steps is to permit the rapid segmentation of different types of tissue without the need for 
chemical dyes or contrast agents.10 Last, the use of FT-IR imaging only involves light interacting with a sample and, 
unlike conventional biochemical analysis methods, does not alter the tissue in any manner. Thus it can provide additional 
information for pathology without the necessity of additional materials, tissue samples or changes in clinical protocols. 
 
In this manuscript we use breast tissue as an example to illustrate the application of FT-IR imaging coupled with 
computerized classification for histopathology. Specifically, we demonstrate that a combination of FT-IR imaging, 
classification algorithms and integrated computational methods for enhancement of acquired data can be used in tandem 
to optimize the development of practical protocols for automated histopathology. Previous studies report on the potential 
for IR spectroscopy in breast pathology,12,13,14,15,16,17 but no complete study on the spectral features of different histologic 
types of breast tissue exists. Preliminary efforts indicate significant spectral variation between different types of breast 
tissue and breast tumors,18,19,20 but a protocol for clinical translation is lacking. We combine fast FT-IR imaging and 
tissue microarray sampling to demonstrate the effectiveness of our approach for automated breast histopathology on 
normal and malignant tissue from five patients. This approach is distinct from that in Raman spectroscopy, where 
histologic models are used in analyzing spectra.21,22 As a first step towards automated tissue segmentation, we 
distinguish breast stroma and epithelium. This is a critical step, as over 99% of breast tumors arise in the epithelial tissue 
lining milk ducts and lobules.23 False color classified images denoting stroma and epithelium are produced, followed by 
analysis of data collection parameters. We evaluate the impact of spectral resolution and noise on classification accuracy 
to demonstrate potential for faster data acquisition without loss in classification confidence. This study presents an initial 
effort in developing applications for FT-IR imaging in clinical pathology. 
 
 

2. METHODOLOGY 
 
2.1 Data Acquisition 
 
The first studies to examine IR spectra of tissue began over fifty years ago,24 but the field did not truly make progress 
due to limitations in instrumentation. Today, a combination of an IR microscope, Michelson interferometer and focal 
plane array (FPA) detector25 permits efficient data acquisition for large sample areas. The data presented in this study is 
collected using the Perkin-Elmer Spotlight 400 imaging spectrometer. A spatial pixel size of 6.25 μm and a spectral 
resolution of 4 cm-1 were employed, with 2 scans averaged for each pixel. An IR background is collected with 120 scans 
co-added at a location on the substrate where no tissue is present. No undersampling was employing in data acquisition 
and a NB medium apodization function was used. A ratio of the background to tissue spectra is then computed to remove 
substrate and air contributions to the spectral data. The Spotlight software atmospheric correction algorithm is applied to 
eliminate remaining atmospheric contributions to the tissue spectra. As opposed to other configurations that employ a 
large FPA detector, this instrument employs a linear array detector that is raster scanned to acquire data from large 
sample areas. We use a combination of instrument control and post-processing software to computationally re-organize 
data acquired into large image sizes. Images of stained tissue are acquired using a standard Zeiss optical microscope. 
 
2.2 Tissue sampling 
 
Tissue microarrays (TMAs) permit facile comparison of small tissue samples from numerous patients26 and are an 
especially useful sampling medium for spectroscopic analyses.27 A TMA contains numerous small round tissue samples, 
termed cores, which are extracted from biopsy samples from different patients. Two paraffin-embedded TMAs were 
obtained from a commercial source (US Biomax) for this study. The first TMA section is placed on a glass slide and 
stained with hematoxylin and eosin (H&E) dyes. In H&E staining, hematoxylin stains nucleic acids and eosin stains 
protein-rich tissue regions. This section is used for visual morphology interpretation by a pathologist. The second TMA 
section is placed on a barium fluoride (BaF2) substrate for FT-IR imaging. Though the arrays contained a large number 
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of samples, a smaller subset of malignant and normal tissue cores from five patients with invasive ductal carcinoma 
(IDC) is selected for this study as the illustrative example. Each of the ten cores is 1.5 mm in diameter; hence, at a 6.25 
μm pixel size, approximately 280,000 spectra are collected for each core. This results in the collection of over 560,000 
spectra for each patient and approximately 2.8 million total spectra for all ten cores. This large spectral dataset facilitates 
rigorous validation of classification protocols at a pixel level. Paraffin is removed from the TMA by immersion in 
hexane with continuous stirring at 40 0C for 48-72 hours. Spectra are recorded at several locations on the TMA every 24 
hours during this period to monitor paraffin removal with the disappearance of the 1462 cm-1 peak.  
 
2.3 Image analysis and classification 
 
A supervised segmentation method is used for FT-IR image classification. This algorithm has been described in detail 
elsewhere,28 but is based on a modified version of a Bayesian classifier. First, the spectral profile of 1641 bands is 
reduced to a set of 89 useful metrics by examination of spectra from manually selected stroma and epithelium tissue 
regions. Metrics are manually selected to include peak ratios, peak areas, and peak centers of gravity. A metric profile M 
is generated for each pixel in each tissue image of the form 

M m m m mnm
� [ , , ,... ]1 2 3 , nm=89     (1) 

where each mi is the value for a single metric and nm is the total number of manually selected metrics. Frequency 
distributions for stroma and epithelium are determined for each metric and used to estimate the probability of a given 
metric profile representing either of these two classes. The probability of an image pixel from each class ci being 
represented by a given metric profile is determined using Bayes’ Rule  

p c M
p M c p c

p Mi
i i( )

( ) ( )
( )

�       (2) 

where p M ci( )  is estimated from the metric class frequency distributions and p M( )  is the probability of a given metric 
profile. The prior probability of particular tissue class p ci( )  in this model cannot be determined due the manual 
selection of tissue classes on FT-IR images, and is estimated as 0.5. Other ways to estimate or optimize the class prior 
probability may be utilized; we have noticed anecdotally, however, that the choice of this value across a large range does 
not significantly affect the classification results. Classification accuracy is estimated with receiver operating 
characteristic (ROC) analysis for selected tissue regions. The area under the ROC curve (AUC) is used to evaluate 
classifier sensitivity and specificity and estimate the potential of the algorithm for accurate histology determinations. The 
classification algorithm is trained on a large array dataset and separately validated on a second array. It is notable that we 
do not develop the entire classification algorithm anew here. First, the central idea of this manuscript is to demonstrate 
the optimization of a developed protocol and second, the sample sizes chosen here are insufficient for de novo algorithm 
development. Data is analyzed using the Environment for Visualizing Images (ENVI) software and with programs 
written in-house using Interactive Data Language (IDL).  
 
2.4 Spectral resolution and noise analysis 
 
Spectral resolution and noise are two common experimental variables that affect results in IR spectral analyses. The 
effects of spectral resolution and spectral noise are evaluated here in the context of quantitative histologic segmentation 
to minimize data collection time. As per the trading rules of IR spectroscopy, data collection time is expected to decrease 
linearly with spectral resolution and a quadratic rate with reduction in signal-to-noise ratio (SNR).29 Ideally, these 
parameters would be analyzed by acquiring data at different spectral resolutions and numbers of spectral co-adds. 
However, the time required to collect multiple images for the TMA is prohibitive. Instead, computational methods are 
used to examine these parameters using the original FT-IR images acquired at 4 cm-1 and 2 scans per pixel. First, spectral 
resolution is evaluated by downsampling the data using a neighbor binning procedure to resolutions of 8, 16, 32, 64 and 
128 cm-1. Classification is then performed on downsampled datasets to determine the coarsest spectral resolution needed 
for satisfactory stroma and epithelium segmentation. For a fine spectral resolution data set at 4 cm-1, the effect of noise is 
evaluated by adding to each spectrum noise in Gaussian distributions with standard deviations of 0.001, 0.01, and 0.1 au. 
Classification accuracy is estimated by evaluating the AUC at each noise standard deviation. Computational noise 
reduction with the minimum noise fraction (MNF) transform30 is evaluated by reducing noise in all the data sets. 
Classification is performed with the same algorithm on these MNF transformed images to determine the impact of this 
noise reduction algorithm on stroma and epithelium segmentation. 
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3. DATA 
 
The classification model presented in this manuscript involves segmentation of stroma and epithelium, which are the two 
most prominent tissue classes in fixed breast tissue used for pathology evaluation.31 In practice, the recognition of 
epithelial cells is especially critical for cancer diagnoses, as the vast majority (>99%) of breast cancers arise in this cell 
type.23 Hence, the two class model is of practical significance. While seemingly simple and practical, however, the 
model can potentially be confounding as stroma consists of many cell types with disparate spectral characteristics. This 
model was employed to develop a classifier using training data from a TMA with forty patients. Final model calibration 
for sixty eight tissue cores yielded an AUC value of 0.99 with an eight metric classifier.32,33 In this study we validate this 
classifier with one malignant and a matched normal TMA core from a subset of five patients. As seen in Figure 1A and 
B, absorbance images based on spectral features closely compare with images of H&E stained tissue. Hence, using 
conventional pathology knowledge we can select image pixels that unequivocally correspond between the two images - 
representing both stroma and epithelium. These pixels are selected by examining FT-IR images at 1080 cm-1 to highlight 
asymmetric PO2 stretching vibrations in glycoprotein in epithelium,14 1236 cm-1 to highlight CH2 wagging vibrations 
associated with collagen proteins,34 1652 cm-1 to highlight C=O stretching vibrations at the protein amide I mode,34 and 
3292 cm-1 to highlight NH bending vibrations at the protein amide A mode (shown as an example in Figure 1B).35 We 
emphasize that multiple vibrational modes must be examined in tandem and pixels identified with great care and 
diligence as these form the gold standard for future comparisons. Over 185,000 pixels are marked in these ten tissue 
cores to serve as the gold standard for ROC analysis (as shown in Figure 1C). Selecting this large set of pixels is 
important to achieve a reasonable sample size to accurately estimate classification potential for the entire data set. 
Boundary pixels are not marked to avoid errors associated with mixed pixels in FT-IR images.27 A qualitative 
comparison of stained and classified images indicates that stroma and epithelium segmentation is reasonable (Figure 
1D), and this is confirmed with an AUC value of 0.98 after quantitative ROC analysis. Stroma and epithelium are easily 
identified on false color classified images without detailed examination and interpretation. This is advantageous over 
traditional staining methods that require the use of chemical dyes and subsequent expert pathologist examination for 
evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Conventional H&E stained images, FT-IR spectral images and classification. (A) An H&E stained image of tissue 

cores from five invasive ductal carcinoma patients. Each row represents a single patient, with malignant tissue samples 
on the left and normal samples on the right. (B) An FT-IR image at 3292 cm-1 denotes the NH bending vibration at the 
amide A protein mode. Brighter regions denote relatively protein-rich stroma. (C) A ground truth FITR image with 
pixels marked as stroma or epithelium serves as the gold standard for ROC analysis and classification evaluation. (D) A 
classified FT-IR image in which all pixels are labeled as stroma or epithelium accurately corresponds to the H&E 
stained image. The classification does not require stains or human interpretation. 
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4. RESULTS 
 
4.1 Effect of spectral resolution on tissue segmentation 
 
The impact of spectral resolution on classification performance is evaluated by downsampling spectra at every pixel with 
a neighbor binning and interpolation procedure. FT-IR image data sets are acquired at 4 cm-1 spectral resolution and are 
downsampled to 8, 16, 32, 64, and 128 cm-1 resolution. As seen in Figure 2A, an average spectrum at each resolution 
from epithelial cells in the gold standard demonstrates that important spectral elements remain identifiable at coarser 
resolutions. While we anticipate that the area under the peaks would be preserved, peak shapes begin to change at a 
courser spectral resolution of 32 or 64 cm-1 due to overlaps in the complicated spectral response. It would not be 
surprising to note that the most robust predictors of class incorporate best both biological diversity and spectral noise 
(arising from both measurement and artifacts). Hence, we anticipate that the use of these metrics would also prove robust 
when spectra are downsampled. Figure 2B demonstrates that the classification accuracy is not significantly affected until 
the spectral resolution is decreased to 128 cm-1.  
 
The result is indeed surprising as numerous prior biomedical studies with vibrational spectroscopy have employed 4 cm-1 
to 16 cm-1 spectral resolution. There are two important differences between the problem here and a majority of those 
studies. First, many of the reported studies used sensitive spectral analysis tools (e.g. second derivatives) or were looking 
for fine spectral features. Second, models for pathology may have needed more complex information. Here, we are 
examining a 2 class problem of very distinct cell types. Hence, the acceptable classification at very coarse resolutions is 
likely permitted by the significant biochemical differences between stroma and epithelium in the metrics selected. 
Previous studies have provided evidence of clear differences in IR spectra from DNA-rich tissues such as epithelium and 
RNA and protein-rich tissues such as stroma,14,20 especially in the IR fingerprint region from 500-1500 cm-1.8  We 
hypothesize that a more complex model with additional tissue classes would likely require a higher spectral resolution 
for reasonable classification, but that this resolution is not required to distinguish stroma and epithelium.  
 
A powerful feature of the algorithm we employ is the utilization of prominent spectral features for classification. Here, 
the features selected as classification metrics are not very sensitive to changes in spectral resolution.36 Absorbance values 
are accurate if the peak full width at half maximum (FWHM) is not significantly less than the spectral resolution. As 
biological materials have broad and overlapping lineshapes, the condition holds even for very coarse resolutions. 
Therefore, the values of spectral metrics are not significantly altered even if some details in the spectrum are affected at 
coarser spectral resolutions. The center of gravity metrics used for classification are particularly robust, as they 
incorporate peak position and shape and are not strongly influenced by peak modifications in downsampled spectra. Care 
must be exercised in making this extrapolation to all data quality. For example, for poor signal to noise ratio spectra, the 
center of gravity calculation will be sensitive to noise.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Spectral resolution effect on classification. (A) Epithelial spectra obtained by downsampling data acquired at 4 cm-1 
indicate that IR spectrum quality degrades appreciably at a spectral resolution coarser that 16 cm-1, as anticipated for 
condensed phase biological materials. (B) AUC analysis for stroma and epithelium segmentation for each resolution 
demonstrates a significant decrease in classification accuracy only at a very course spectral resolution beyond 64 cm-1. 
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The effective classification in downsampled FT-IR images presented in this manuscript indicates potential for faster data 
acquisition without significant loss in classification accuracy. Figure 2 suggests that no significant classification 
differences are observed in images up to 64 cm-1. Since data acquisition time is estimated to decreased linearly with 
spectral resolution,29 FT-IR images could be acquired 16 times as fast without any loss in classification performance for 
the two class model presented in this manuscript. Again, we emphasize that the results are preliminary and should be 
carefully validated. Nevertheless, the idea of optimizing data acquisition by modeling the results of other experimental 
conditions is an important one that should be pursued in practical translation of these protocols for clinical use. 
 
4.2  Effect of spectral noise on tissue segmentation 

 
Evaluation of acceptable spectral noise for FT-IR image classification is important for efficient data collection. For 
practical applications, it is advantageous to acquire data with the lowest SNR that permits reasonable classification. Raw 
data is acquired with a peak-to-peak noise value of 0.011 au, a root mean square (rms) noise value of 0.008 au, and an 
average amide I height of 0.328 au. To assess the impact of spectral noise on classification accuracy, Gaussian noise is 
added with a standard deviation of 0.001, 0.01, and 0.1 au. Figure 3 provides a qualitative evaluation of histologic 
images from the acquired data set (Figure 3A) and from the data sets with added Gaussian noise (Figures 3B-D).  
 
These images indicate that acceptable classification is achieved when noise is added at a standard deviation of 0.001 au 
(Figure 3B), but that classification accuracy appreciably decreases with the addition of noise at or above a standard 
deviation of 0.01 au. This is expected, since adding noise at a standard deviation of 0.001 au does not significantly 
change the FT-IR image data SNR. The data set with noise added at a standard deviation of 0.01 au (Figure 3C) produces 
a classified image with regions of distinguishable stroma and epithelium, although there are numerous stray pixels that 
are not correctly classified, similar to salt and pepper noise. Upon the addition of noise of ~0.1 au, classified images 
become completely indistinguishable (Figure 3D), including the misidentification of many pixels on the empty region of 
the slides as tissue. This loss in classification accuracy is caused by an underlying broadening of spectral metric 
distributions for each class. This broadening bridges the difference in metric values. The overlap in values in turn 
decreases classification confidence as measured by the AUC. Hence, we have used the AUC as a reasonable measure of 
the classification accuracy at every experimental condition. 
 
A plot of AUC against the added noise (Figure 3E) demonstrates that the AUC value remains relatively constant with the 
addition of low levels of noise. It then decreases to a mean AUC of 0.77 with the addition of noise at a standard 
deviation of 0.01 au and falls to a mean AUC of ~0.5 at a noise standard deviation of 0.1 au. It is surprising that the 
stroma AUC actually falls below 0.5. Though the AUC values should not be below 0.5 for classified images, our 
algorithm contains a pixel rejection step. A pixel is rejected if the measured metric values do not lie within the prior 
probability distributions. Hence, a small number of pixels are rejected at low noise levels and are not accounted. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Effect of noise on FT-IR image classification. Classified images are shown for (A) raw data, (B) data with Gaussian 
noise added at a standard deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, 
and (D) data with Gaussian noise added at a standard deviation of 0.1 au. (E) The AUC values for classification with 
noise added at a standard deviation of 0.001, 0.01, and 0.1 au confirm that classification accuracy is reasonable with a 
small amount of additional noise but unsatisfactory in data with a noise standard deviation at or above 0.01 au.  
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For the two class stroma and epithelium segmentation model presented in this manuscript, an AUC value of 0.77 does 
not indicate sufficient classification confidence. We would expect nearly perfect discrimination of theses two types of 
tissue since there are numerous spectral features that distinguish epithelium and stroma.14,20,32,34 An estimated 
classification accuracy of 0.5 for this model is equivalent to random guessing and does not provide any information 
about tissue histology. Examination of the curve in Figure 3E indicates that some additional spectral noise at a level of 
0.001 can be present without loss in classification accuracy for this two class model. We did not observe any difference 
in this behavior with pathology of the tissue. Breast tumor tissue is often very heterogeneous and precise pixel 
classification is needed to produce reasonable automated classification results. Hence these results represent a good 
starting point to optimize a practical protocol. There may also be a patient or clinical setting dependence of these optimal 
operating points that remains to be probed. From the plot, it is likely that we are close to the operating point of a practical 
protocol, as addition of a small amount of noise (>0.01 au) makes the classification unstable.  
 
Last, the classification algorithm was optimized using a noise level similar to that of the acquired data set presented in 
this manuscript. Hence, the optimal metric sets and discriminant function are obtained for that noise level. It would not 
prove surprising if a de novo training and optimization of lower quality data could yield similar results. A de novo 
classification algorithm development, however, is not guaranteed to produce equivalent results for the higher noise cases 
and will fail where overlap between the prior distributions is significant due to noise broadening. Hence, we believe that 
the conditions found here are close to optimal.  
 
4.3 Noise reduction with the MNF transform 

 
In this manuscript, we have used an instrument with a high performance detector that has a low multichannel detection 
advantage. FT-IR imaging using large focal plane array (FPA) detectors, however, is a promising avenue for rapid data 
acquisitions due to the large multichannel advantage. Imaging with FPAs, unfortunately, often results in low signal-to-
noise (SNR) data due to the poor detector characteristics and other limitations.37 From the trading rules of FT-IR 
spectroscopy,29 achieving a factor of n improvement in SNR would result in a increase of n2 in data collection time. An 
alternative to improve SNR is to employ post-processing algorithms to reduce noise. One such avenue for noise 
reduction is the use of the minimum noise fraction (MNF) transform. The MNF transform can be used in a mathematical 
procedure to remove uncorrelated contributions from the spatial and spectral domains. First, a forward transform is used 
to perform a factor analysis and re-order spectral data in the order of decreasing SNR. The MNF calculation is a two-step 
process. A noise covariance matrix is estimated and used to decorrelate and rescale the noise in the data. Subsequently, a 
standard PCA performed on the noise-whitened data. A second step is to select only those factors that correspond to a 
sufficiently high SNR by examining the eigenvalue images. The first few eigenvalue images generally correspond to 
higher SNR values and contain most of the useful information. Noise reduction is achieved by suppressing the later 
factors corresponding largely to noise or zero-filling components and inverse transforming the data. A noise reduction by 
a factor greater than 5 could be achieved by this technique if the initial SNR is sufficiently high.38,39 Though the utility of 
this method is demonstrated for IR imaging,40 its use has not been widespread. Further, the use of MNF transformed data 
for tissue classification has not been attempted.  
 
We propose to use the MNF transform route as a method for fast data acquisition without loss in classification accuracy. 
The protocol involves rapid data collection at a low SNR, followed by application of MNF transform for noise reduction. 
Classification is then performed on these noise-reduced images. It must be noted that the gain here is through 
computational techniques and does not involve changes in instrumentation hardware or data acquisition time. A 
secondary advantage that may arise is that decreasing the variance in spectral data could also decrease the biologic 
variance in the data and should improve separation of tissue classes. Excessive image noise will broaden spectral metric 
distributions for each class, which increases the error associated with each metric and decreases classification 
confidence. Therefore, if the metric distribution mean values for each class are sufficiently different decreasing noise 
will decrease the area of metric distribution overlap and improve segmentation confidence.  
 
The impact of noise reduction on classification is demonstrated in Figure 4. The MNF transform-based protocol is 
applied to the acquired data set and the data sets with Gaussian noise added as discussed in the previous section. 
Classified images are displayed for each noise level after MNF transform-aided noise reduction (Figures 4A-D). The 
AUC values for the MNF transformed image sets are compared with the AUC values for noisy images (Figure 4E).  
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Fig. 4. Improvement in automated FT-IR image classification with the application of the MNF transform. Classified images 
from  MNF transformed FT-IR images are shown for (A) raw data, (B) data with Gaussian noise added at a standard 
deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, and (D) data with 
Gaussian noise added at a standard deviation of 0.1 au. (E) Comparing AUC values for original FT-IR images and 
MNF transformed FT-IR images demonstrates that classification improves with noise reduction, especially when the 
noise has a standard deviation of 0.01 - 0.1 au.  

 
Evaluation of classified images and AUC values indicates that the MNF transform improves classifier performance for 
each image. Given that the classification accuracy was very high, the effects of MNF transform are significant only when 
the noise level degrades the original data. Nevertheless, it can be seen from the figure that the high accuracy is recovered 
for an order of magnitude increase in data noise. Therefore, application of the MNF transform on data acquired with 
these noise distributions will make a significant difference in classifier performance. Specifically, we can acquire data 
with a noise standard deviation of 0.01 au and provide accuracy levels that are comparable to those obtained in our 
measurements of lower noise. This finding is significant in that noise levels of 0.01 au are commonly obtained in rapidly 
acquired FT-IR imaging data sets with large array detectors. Further, since the classification accuracy seems to be little 
affected by spectral resolution, we can anticipate that it will be little affected by the choice of an apodization function 
and other minor sources of error for a reasonable spectral resolution. Hence, we contend that the protocol developed here 
would be well-suited to rapid imaging with large array detectors. 
 
 

5. CONCLUSIONS 
 
Recent developments in FT-IR imaging and data processing facilitate new applications for this technology. In this 
manuscript, we report an initial application in automating histopathology of breast tissue. Supervised segmentation of 
breast stroma and epithelium in FT-IR images is presented and nearly-perfect classification accuracy is estimated. The 
impacts of spectral resolution and noise on image classification are evaluated. Results in this paper demonstrate that 
spectral resolution can be decreased 16-fold without loss in classification accuracy. The classification algorithm is more 
sensitive to noise, but noise reduction with the MNF transform can improve classification accuracy while decreasing the 
time required for data collection. This evaluation of the impact of experimental parameters on classification accuracy 
represents a first step in developing a practical protocol for rapid and automated histopathology. 
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Theory of Midinfrared Absorption
Microspectroscopy: I. Homogeneous Samples
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Midinfrared (IR) microspectroscopy is widely employed
for spatially localized spectral analyses. A comprehensive
theoretical model for the technique, however, has not
been previously proposed. In this paper, rigorous theory
is presented for IR absorption microspectroscopy by using
Maxwell’s equations to model beam propagation. Focus-
ing effects, material dispersion, and the geometry of
the sample are accounted to predict spectral response
for homogeneous samples. Predictions are validated
experimentally using Fourier transform IR (FT-IR) mi-
crospectroscopic examination of a photoresist. The results
emphasize that meaningful interpretation of IR micro-
spectroscopic data must involve an understanding of the
coupled optical effects associated with the sample, sub-
strate properties, and microscopy configuration. Simula-
tions provide guidance for developing experimental meth-
ods and future instrument design by quantifying distortions
in the recorded data. Distortions are especially severe for
transflection mode and for samples mounted on certain
substrates. Last, the model generalizes to rigorously
consider the effects of focusing. While spectral analyses
range from examining gross spectral features to assessing
subtle features using advanced chemometrics, the limita-
tions imposed by these effects in the data acquisition on
the information available are less clear. The distorting
effects are shown to be larger than noise levels seen in
modern spectrometers. Hence, the model provides a
framework to quantify spectral distortions that may limit
the accuracy of information or present confounding effects
in microspectroscopy.

Infrared (IR) absorption spectroscopy has been coupled to
microscopy in various configurations for over 50 years.1 The
modern coupling of an interferometer with a microscope and
mapping stage has enabled raster recording of Fourier transform
infrared (FT-IR) spectra,2 considerably accelerating the numbers
of studies and scope of analysis by making instrumentation
practical.3 Numerous applications have been reported, for ex-

ample, in materials science,4 forensics,5 and biomedical research.6,7

For a number of reasons, these raster mapping systems are best
utilized for point examination of specific sample areas.8 Signifi-
cantly higher imaging speeds and practical wide-field imaging can
now be routinely attained by FT-IR microspectroscopy with focal
plane array (FPA) detectors.9,10 Hence, one can consider the
current state of mid-IR microscopy to consist of two diverging
modes. In the first, point microspectroscopy is conducted on small,
homogeneous domains. The data acquisition is often guided by
visible-band microscopy that is parfocal and colinear with the IR
beam in the instrument; this mode is called point microscopy.
The second major modality utilizes array detectors to measure
across large areas of samples, with a spectrum recorded for each
of tens to thousands of pixels; this mode is called imaging. The
two modes are related and collectively termed microspectrosopy,
in that both use focusing to collect spectra from small regions.

Ideally, FT-IR microspectroscopy can be thought to be an
extension of IR spectroscopy localized to specific points in the
sample. However, as FT-IR microspectroscopy is currently prac-
ticed,3 this description is not accurate. The geometry of the sample
boundaries, the morphology within the sample, the surrounding
media, and the imaging optics all affect the measurements. In any
given data set, the net contribution of all of these effects is
observed, so that the spectra generally differ from the spectral
response of the bulk material in the sample. Previous analyses of
spectral differences between bulk and microscopy data have
focused on the effects of stray light, the effects of oblique incidence
on corrections to Beer’s law11 and orientation measurements.4

Reports of optical distortions in FT-IR imaging have focused on the
role of interfaces,12 on scattering at an edge13 and on scattering by
the sample.14 Distortions in a reflection-absorption (transflection)
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measurement geometry have received particular attention,15,14 e.g.,
a transformation procedure to correct a dispersive phase error
has been proposed.13 However, no study in the literature has
rigorously addressed the cause of apparent spectral artifacts and
morphological distortions from first principles as a function of the
microscope design and sample parameters. This situation is in
sharp contrast to, for example, fluorescence microscopy, where
the theory is highly sophisticated and numerical corrections to
the data can be confidently made.16-20

Considerable care must be taken in applying the methods of
analysis from visible microscopy to infrared microspectroscopy.
Fluorescent emissions from distinct positions within the sample
are uncorrelated, for example, allowing relatively simple modeling
of image formation. In the visible and near-IR spectral regions,
samples typically exhibit weak and/or broad absorbance profiles
and the dominant intrinsic optical process is scattering. Hence,
the usual approach is to describe the sample as a collection of
nondispersive scattering inhomogeneities. In the mid-IR, however,
fundamental vibrational modes of molecular species are resonant
with the optical frequencies of the incident radiation. These
resonances lead to sharp and strong absorption features that, of
course, form the very basis of spectroscopy. As a consequence,
the imaginary (absorptive) part of the refractive index is significant
and the real part of the index undergoes a large anomalous
dispersion.21 It is this interplay of absorption (the contrast
mechanism in IR spectroscopy), anomalous dispersion, and optical
energy transport that, in part, leads to complications in recording
and understanding of data.

In this manuscript, rigorous optical theory is developed for IR
microspectroscopy. The analysis will enable an understanding of
the relationship between properties of the sample and recorded
data and will enable quantitative, instrument independent, and
sample-geometry independent data interpretation. While the scope
is limited to point microscopy of samples with simple layered
structure (i.e., no transverse variation) in this manuscript, it is
demonstrated that significant spectral differences from bulk
measurements and significant spectral distortions may arise.
When nontrivial transverse sample structure or morphology is
considered, the situation becomes more complicated and that case
is addressed in the follow-up article.22 Hence, this manuscript
serves both to help in understanding the sample-instrument
effects for homogeneous samples and as a basis for further
development of IR microspectroscopy theory for complex sample
morphologies.

The following sections first describe the development of a
mathematical model for point microspectroscopy. A planewave
solution of Maxwell’s equations is found for the sample-instrument
system, and this solution is used to construct a focused-field
solution. Next, numerical simulations are presented to systemati-

cally examine the effects of focusing, dispersion, and sample
structure. The model is also experimentally validated on a
benchmarking sample.

THEORETICAL MODEL
Two generic optical systems for microspectroscopy are il-

lustrated in Figure 1. The condensing optics focus light onto a
sample supported by a planar substrate. The sample is assumed
to be a layered medium without transverse structure. The resulting
planar geometry, with transverse translational invariance, admits
a relatively simple solution of Maxwell’s equations,23 and boundary
conditions can be used to specify an incoming field consistent
with focusing. As illustrated in Figure 1, transmission and
transflection geometries are considered. While many IR micro-
scopes are bottom illuminated for transmission and top il-
luminated for transflection, here top illumination is considered
for both cases, in order to align the analytical treatment. It must
be noted that the transmission case is directionally invariant
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Figure 1. Illustration of focusing transmission and transflection
optics. Cassegrains are used to focus light illuminating the sample
and to collect the light to be detected. Loci of constant ray length are
illustrated (- - -) and represent optical phase fronts. The locus
above the upper Cassegrain can be regarded as an entrance pupil,
and the loci below the upper Cassegrain can be regarded as an exit
pupil. Note that for notational consistency, the illuminating light is
always considered to originate from above the sample (i.e., from the
z direction). The standard transmission case, where the sample is
illuminated from underneath, through the substrate,25 may be modeled
using reciprocity24 or by inverting the sample-substrate system, as
illustrated. In this illustration, and in the numerical simulations that
follow, the objective and condenser Cassegrains are assumed to be
matched, although the theory presented is general and can account
for mismatched Cassegrains.
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for these samples,24 hence there is no loss of generality in
considering top illumination.

The electromagnetic field in each layer of the sample-
instrument system may be described using planewaves which
satisfy both the boundary conditions and Maxwell’s equations.
This type of planewave analysis26 is commonly encountered in
many fields, including the design of antireflection coatings and
Fabry-Perot interferometers. In contrast to many such analyses
in the visible region of the spectrum, it is necessary to consider
both the real (dispersive) and imaginary (absorptive) parts of the
refractive index here. The focused field is constructed as a sum
of planewaves incident from the diversity of angles dictated by
the focusing optics. Each planewave can be propagated through
the layered sample and substrate independently in this construc-
tion, generalizing the approach of Török et al.27 Thus, the response
of the system to a single incident plane wave is addressed first,
then the incident focused field is described and, finally, the total
resulting measurement is predicted.

Planewave Solutions. A Cartesian coordinate system is
chosen with the z axis perpendicular to the planar boundaries
between sample layers. Position vectors are written r ) (x, y, z)T

where a superscript T denotes the vector transpose. Optical
fields are represented by complex amplitudes at each temporal
harmonic frequency cνj where c is the speed of light in free
space and νj is the free space wavenumber. The permittivity
and permeability of free space are denoted ε0 and μ0, respec-
tively. It is assumed that the media in all layers are linear,
isotropic, nonmagnetic (the relative permeability is unity), and
contains no free charge. The relative permittivity ε(νj) or,
equivalently, the real and imaginary (absorptive) parts of the
refractive index (n(νj) and k(νj), respectively), vary from layer
to layer. A single complex planewave23 is then described by
electric and magnetic fields of the respective forms

E(r, νj, t) ) E0 exp(i2πνjs · r) exp(-i2πνjct) (1)

H(r, νj, t) ) �ε0

μ0
(s × E0) exp(i2πνjs · r) exp(-i2πνjct) (2)

where E0 is the planewave amplitude vector, and s is a vector
determining the direction of propagation and any absorptive
or evanescent decay of the field. The vector s ) (sx, sy, sz)T

obeys the dispersion relation

sx
2 + sy

2 + sz
2 ) ε(νj) ) [n(νj) + ik(νj)]2 (3)

For convenience, the time harmonic factors exp(-i2πνjct) in eqs
1 and 2 are suppressed for the remainder of this article.

Samples for infrared microspectroscopy are typically mounted
on a substrate and are present in air. Hence, a homogeneous
sample may be considered to be a multilayer structure in which
the sample, substrate, and air form a three layer system. For

convenience, the effects of atmospheric absorption are ne-
glected here. To generalize, the model system consists of L
layers, each parallel to the x-y plane. In each layer, the field
may be written as a superposition of planewaves of the form
described above, the so-called angular spectrum.23 The electric
field in the l th layer, that is in the z interval between the
boundaries z(l -1) and z(l ) (where z(l ) > z(l-1)), is given by the
sum over all components of the planewave angular spectrum
in the slab,

E(l )(x, y, z, νj) ) νj∫ ∫R2 {B(l )(sx, sy, νj) exp[i2πνjsz
(l )(z - z(l-1))] +

B̂(l )(sx, sy, νj) exp[-i2πνjsz
(l )(z - z(l ))]} ×

exp[i2πνj(sxx + syy)] dsx dsy (4)

where, by eq 3,

sz
(l ) ) √[n(l )(νj) + ik(l )(νj)]2 - sx

2 - sy
2 (5)

The principal value of the square root is taken by definition, so
that the downward-propagating angular spectrum B(l ) (sx, sy, νj)
and the upward-propagating angular spectrum B̂(l ) (sx, sy, νj)
must be explicitly distinguished in eq 4. The factor of νj is
included to ensure that angular spectra constant in νj produces a
power spectrum also constant in νj. Also note that the downward
propagating light, described by B(l ) (sx, sy, νj), is referenced to
the upper boundary of the layer z(l-1 ), and the upward
propagating light, described by B̂(l ) (sx, sy, νj), is referenced to
the lower boundary of the layer z(l ).

The field in the sample is determined by the field incident
from the focusing optics, i.e., by B(1)(sx, sy, νj). This field
appears in eq 4 referenced to an arbitrary plane z(0) that does
not correspond to a layer boundary but is instead chosen
for convenience. Boundary conditions relate the incident
field to the field in each layer of the sample and to the field
in the substrate. Maxwell’s equations dictate these boundary
conditions and also require transversality of the field in each
layer. Explicitly, Gauss’ equation ∇ ·E(r, νj, t) ) 0, results
in the constraints

sxBx
(l )(sx, sy, νj) + syBy

(l )(sx, sy, νj) + sz
(l )Bz

(l )(sx, sy, νj) ) 0

(6)

and

sxB̂x
(l )(sx, sy, νj) + syB̂y

(l )(sx, sy, νj) - sz
(l )B̂z

(l )(sx, sy, νj) ) 0

(7)

The requirement that the transverse components of E(r, νj, t) and
H(r, νj, t) are continuous across layer boundaries couples plane
wave components with the same arguments (sx, sy, νj), across
layers via the constraints

Bx
(l ) exp[i2πνjsz

(l )(z(l ) - z(l-1 ))] + B̂x
(l ) )

Bx
(l+1) + B̂x

(l+1) exp[-i2πνjsz
(l+1)(z(l ) - z(l+1))] (8)
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By
(l ) exp[i2πνjsz

(l )(z(l ) - z(l-1))] + B̂y
(l ) )

By
(l+1) + B̂y

(l+1)exp[-i2πνjsz
(l+1)(z(l ) - z(l+1))] (9)

(syBz
(l ) - sz

(l )By
(l )) exp[i2πνjsz

(l )(z(l ) - z(l-1))] +

(syB̂z
(l ) + sz

(l )B̂y
(l )) ) (syBz

(l+1) - sz
(l+1)By

(l+1)) +

(syB̂z
(l+1) + sz

(l+1)B̂y
(l+1)) exp[-i2πνjsz

(l+1)(z(l ) - z(l+1))] (10)

(sz
(l )Bx

(l ) - sxBz
(l )) exp[i2πνjsz

(l )(z(l ) - z(l-1))] +

(-sz
(l )B̂x

(l ) - sxB̂z
(l )) ) (sz

(l+1)Bx
(l+1) - sxBz

(l+1)) +

(-sz
(l+1)B̂x

(l+1) - sxB̂z
(l+1)) exp[-i2πνjsz

(l+1)(z(l ) - z(l+1))] (11)

For fixed arguments (sx, sy, νj) there are 6L unknowns, 3L for
B(l ) (sx, sy, νj) and 3L for B̂(l ) (sx, sy, νj). The transversality
conditions of eqs 6 and 7 provide 2L linearly independent
equations (one pair for each layer) and the boundary conditions
of eqs 8-11 provide 4(L - 1) linearly independent equations (four
equations for each boundary). The remaining degrees of freedom
allow for the specification of the incident (incoming) field at the
top and bottom layers. At the last boundary, the z ) z(L-1) plane,
the field is assumed to be strictly outgoing, i.e., the incoming
field is zero. Thus, it is required that

B̂(L)(sx, sy, νj) ) 0 (12)

As a result, there are only two degrees of freedom in the system,
which are identified with the electric field amplitude of the
illumination.

The total field is linear in the values of the illuminating field
B(1)(sx, sy, νj); hence, it is instructive to consider as an example the
case of single-planewave illumination, as shown in Figure 2. Notice
that the coherent superposition of transmitted and reflected fields
produces interference patterns in the sample and that the absorption
in the sample results in decaying amplitudes into the media. These
effects are also important in the case where the incident field consists
of a superposition of planewaves that form a focus.

As seen in Figure 2, enforcing eqs 6-11 results in a solution
where transmission, reflection, and interference effects all play a
role. However, if two boundaries are separated by a large distance,
the exponential factors in eqs 8-11 will result in a solution that
varies rapidly with a small change in the wavelength, i.e., the
interference effects will change rapidly as a function of νj. Such a
situation arises when light propagates through a mounting
substrate with a thickness much greater than a wavelength. This
type of highly oscillatory spectral behavior will not be resolved
by the spectrometer, meaning that the interference effects from
the thick layer will not be observed in the data. Hence, in
transmission mode, the effect of the mounting substrate can be
accurately described by modeling the distant substrate-air
boundary as uncoupled to the closely spaced boundaries, i.e.,
those associated with the sample. Thus eqs 6-11 need only to
be solved for closely spaced boundaries (the air-sample and the
sample-substrate boundaries), and the resulting field of interest
can otherwise be propagated through the distant boundary using
standard transmission coefficients.

Focused Illumination. While the previous subsection has
illustrated the interaction of planewave fields with a sample,

microspectroscopy involves the use of focusing optics to localize
signal and increase local throughput. Focusing optics can be
modeled using geometrical optics techniques such as ray tracing.
In this paradigm, the Cassegrain arrangement that is usually
employed for focusing in the mid-IR maps a ray on the entrance
pupil to a focused ray on the exit pupil as illustrated in Figure 3.
It should be noted that the locus described as the exit pupil will
intersect rays emerging from the Cassegrain when the Cassegrain
is used as a condenser but will intersect incoming rays when the
Cassegrain is used for collection (i.e., as an objective).

The angular spectrum amplitudes of the focused, illuminating
field, B(1)(sx, sy, νj), can be associated with rays in the exit pupil.28

As illustrated in Figure 3, the vector elements sx and sy determine
not only the propagation direction of a focused ray but also
the intersection of the associated ray path and the entrance
pupil. The field in the pupil can therefore be expressed as a
vector function P(sx, sy, νj). A matrix CI(sx, sy, νj) relates P(sx, sy, νj)
to B(1)(sx, sy, νj) and explicitly accounts for the optical elements
(i.e., the Cassegrain) in the system,

B(1)(sx, sy, νj) ) CI(sx, sy, νj)P(sx, sy, νj) (13)

(28) Wolf, E. Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 1959, 253, 349–
357.

Figure 2. An example of the field produced in a layered sample
under unit-amplitude planewave illumination. The illuminating light is
incident at an angle of 45° in the x-z plane, is purely y-polarized
and has a wavelength of 10 μm in free space. The real part of the
complex representation of the field is displayed. The indices of the
four media present are, from top to bottom, 1, 1.4 + 0.05i, 1.4, and
1. The boundaries of the media are marked with dashed lines.
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The case of a lossless aplanatic focusing system has been
addressed by Richards and Wolf,29 and results from their work
can be used to find CI(sx, sy, νj).

The construction of CI(sx, sy, νj) is most easily accomplished
by defining polarization basis vectors before and after the
Cassegrain, namely, the transverse-electric (s-polarized) and
transverse-magnetic (p-polarized) vectors. Assuming that the
Cassegrain(s) is in free space, these vectors are

vs
′ ) vs )

1

√sx
2 + sy

2
(-sy, sx, 0)T (14)

vp ) 1

√sx
2 + sy

2
(-sx,-sy, 0)T (15)

vp
′ ) 1

√sx
2 + sy

2
(-sxsz

(1),-sysz
(1), sx

2 + sy
2)T (16)

where a prime indicates a vector on the exit pupil side of the
Cassegrain and no prime indicates the entrance pupil side.
Since the focusing is performed in free space and only
propagating waves are produced, sx

2 + sy
2 e 1, and sx, sy, and

sz
(1) are all real.

The field on the exit pupil P′(sx, sy, νj) can be found by
mapping each ray through the focusing optics and correctly
accounting for conservation of energy.29 With neglect of the
constant phase factors,

P′(sx, sy, νj) ) √sz
(1)[vs

′vs
T + vp

′vp
T]P(sx, sy, νj) (17)

The field on the exit pupil can then be used to determine the
resulting angular spectrum28

B(1)(sx, sy, νj) )
�P′(sx, sy, νj)

sz
(1) (18)

where � is the focal length of the Cassegrain. The description of
the focusing optics then takes the form,

CI(sx, sy, νj) ) fs(sx, sy, νj)vs
′vs

T + fp(sx, sy, νj)vp
′vp

T (19)

and in the lossless aplanatic case,

fs(sx, sy, νj) ) fp(sx, sy, νj) ∝ �

√sz
(1)

(20)

More generally, fs(sx, sy, νj) and fp(sx, sy, νj) can be modified to
capture losses, aberrations, and the central obstruction in the
Cassegrain. Note that it is implicit in this treatment that the
illumination reference plane z(0) is the focal plane for a focus
formed in free space. It can also be seen, from eq 19 that
B(1)(sx, sy, νj) obeys the transversality condition of eq 6. Examples
of focused angular spectra, with the central Cassegrain obstruction
included, are shown in Figure 4.

In free space, the illuminating angular spectrum B(1)(sx, sy, νj)
completely defines the field. The presence of the layered
sample alters the field in a manner that may be calculated for
each planewave component separately, as described above. The
resultant focused field is then found by summing the planewave
contributions in the resulting angular spectra. An example of
a field focused into a layered sample is shown in Figure 5.

The analysis to this point has addressed a planewave normally
incident on the entrance of the condenser Cassegrain. At close to
normal incidence, a slightly off-axis illumination results in the field

(29) Richards, B.; Wolf, E. Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 1959,
253, 358–379.

Figure 3. An illustrative ray path through a Cassegrain system.
Mirrors (heavy lines) reflect rays parallel to the z axis at the
entrance pupil to rays at the exit pupil which are directed to the
focal point. The vector s gives the propagation direction for a ray
and, for an aplanatic system, the transverse component of this
vector (sx in this two-dimensional figure) is proportional to the
transverse position at which the ray intersects the entrance pupil.
The ray path for sx ) 0 is represented by the dotted line; in a
Cassegrain, this ray does not contribute to the focused field.

Figure 4. Normalized angular spectra B(1)(sx, sy, νj) resulting from a
y-polarized planewave on the entrance pupil. The (a,d,g) x compo-
nents, (b,e,h) y components, and (c,f,i) z components of B(1)(sx, sy, νj)
are plotted separately. Focusing numerical apertures (NAs) of (a-c)
0.9, (d-f) 0.5, and (g-i) 0.2 are illustrated, and in each case the NA
of the central obstruction is 20% of the total NA. Note that for large
apertures, the y-polarized field on the entrance pupil produces
significant x- and z-directed fields on the exit pupil. In transflection
mode, one-half of the apertures above would be used for illumination,
with the other half reserved for collection.
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P(sx, sy, νj) ≈ P0(sx, sy, νj) exp[-i2πνj(sxxo + syyo)] (21)

at the entrance pupil, where xo and yo determine the inclination
of the beam and the normally incident field is P0(sx, sy, νj).
Carrying the illumination of eq 21 through eqs 13 and 4 shows
that the inclination will have the effect of spatially displacing the
focused field by ro ) (xo, yo, 0)T. In this manner, the angle of
incidence of light on the entrance pupil governs the transverse
position of the focused field. The use of aplanatic optics gives
minimal distortions in the translated field.23

In widefield imaging, light is incident on the illumination Cas-
segrain at a range of angles simultaneously. Fields associated with
distinct illumination angles are generally statistically uncorrelated,
meaning that each can be considered individually. The resultant
intensities on the detector (see the following subsection) sum,
without interfering, in the process of data collection. Similarly, for
unpolarized illumination, an x-polarized illumination field and a
y-polarized illumination are present simultaneously. Each of these
can also be analyzed independently and the measured intensity of
each summed (an incoherent sum) to give the total signal.

Detection. The field at the detector may be related to the field
emerging from the sample in much the same way that the
illuminating field is found from the field in the entrance pupil. In
transmission mode, the field exiting the Cassegrain objective,
denoted Q(sx, sy, νj), is dependent on the emerging angular
spectrum B(L)(sx, sy, νj). Similar to eq 13,

Q(sx, sy, νj) ) CT(sx, sy, νj)B(L)(sx, sy, νj) (22)

In the transflection mode, the field exiting the sample is the
upward propagating field determined by the angular spectrum
B̂(1)(sx, sy, νj) and

Q(sx, sy, νj) ) CR(sx, sy, νj)B̂(1)(sx, sy, νj) (23)

As with the illumination matrix CI(sx, sy, νj), the matrices
CT(sx, sy, νj) and CR(sx, sy, νj) describe the focusing optics for each
case. In transmission, CT(sx, sy, νj) describes focusing of the
downward propagating light transmitted through the sample
and substrate, while in transflection CR(sx, sy, νj) describes the
focusing of the upward propagating reflected light.

The angular spectra emerging from the sample define the field
incident on the objective Cassegrain. Similar to eq 18, this incident
field can be expressed as Q′(sx, sy, νj) ) B(L)(sx, sy, νj)sz

(L)/� in
transmission mode and as Q′(sx, sy, νj) ) B(1)(sx, sy, νj)sz

(1)/� in
transflection mode. The mapping of the diverging field
Q′(sx, sy, νj) through an ideal objective Cassegrain to the
collimated field Q(sx, sy, νj) obeys the same relation as was given
in the illumination case, i.e., eq 17. Assuming that the last layer
of the system is free-space, the transmission mode relation
CT(sx, sy, νj) may therefore be represented compactly in the
bases defined in eqs 14-16,

CT(sx, sy, νj) ) fs
′(sx, sy, νj)vs(vs

′)T + fp
′(sx, sy, νj)vp(vp

′)T (24)

where

fs
′(sx, sy, νj) ) fp

′(sx, sy, νj) ∝
√sz

(1)

�
(25)

for the ideal Cassegrain objective. Notice that for transmission
with no sample or substrate (the empty instrument case),
B(L)(sx, sy, νj) ) B(1)(sx, sy, νj), leading to the result P(sx, sy, νj) )
Q(sx, sy, νj). This is to be expected; with no sample or substrate,
propagation through the focusing system has no net effect.

In transflection mode a similar relation holds,

CR(sx, sy, νj) ) f̂s
′(sx, sy, νj)v̂s(v̂s

′)T + f̂p
′(sx, sy, νj)v̂p(v̂p

′)T

(26)

where f̂s′(sx, sy, νj) and f̂p′(sx, sy, νj) are as in eq 25 for ideal
collection, and the reflected s- and p-polarized basis vectors are
given by the expressions

v̂s ) v̂s
′ ) 1

√sx
2 + sy

2
(-sy, sx, 0)T (27)

v̂p ) 1

√sx
2 + sy

2
(sx, sy, 0)T (28)

v̂p
′ ) 1

√sx
2 + sy

2
(sxsz

(1), sysz
(1), sx

2 + sy
2)T (29)

Figure 5. The focused field magnitude |E(x, y, z, νj)| for νj ) 1000
cm-1 (a free space wavelength of 10 μm), the four-layer object of
Figure 2 and the angular planewave spectrum of Figure 4d-f plotted
on a normalized scale. The free space focal plane is at z(0) ) 0. One
transverse-axial (x-z) section is plotted at y ) 0 and three
transverse-transverse (x-y) sections are plotted at z ) -15 μm, z
) 0, and z ) 15 μm. In this example, the Cassegrain pupil is filled,
i.e., there are no apertures limiting the width of the illuminating beam
before the focusing optics.
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As before, a prime indicates a vector on the sample side of the
Cassegrain.

To achieve magnification, the field Q(sx, sy, νj) is focused on
to a detector by a low-angle focusing system. For an imaging
system with magnification of M, the field on the detector plane
is given by

D(x, y, νj) ) νj
M ∫ ∫R2

Q(sx, sy, νj) exp(i2πνjsz
(1)zd) ×

exp[i2πνj( sx

M
x +

sy

M
y)] dsx dsy, (30)

where sz
(1) is calculated as in eq 5 but with magnified values sx/M

and sy/M instead of sx and sy, and zd is the offset between the
detector plane and the focal plane. The focusing described in
eq 30 is of the same form as in eq 4 but with the focused spectrum
corresponding to Q(sx, sy, νj), the field incident on the detector
focusing optics. This is justified for the focusing onto the
detector, as the fields on the entrance and exit pupils of
the low-angle focusing system are approximately equal, i.e.,
the focusing tensor C(sx, sy, νj) is modeled as the identity
operator. Note that D(x, y, νj), the field incident on the detector,
lies in the x-y plane as Q(sx, sy, νj) is spanned by vs and vp (see
eqs 14, 15, 24, and 26).

The signal measured by an optical detector is proportional to
the intensity of the field integrated over the detector area, i.e.,

I(νj) ) ∫ ∫Ω
|D(x, y, νj)|2 dx dy (31)

where Ω is the detector area. If the detector area is large
compared to the focal spot, then the region of integration above
can be replaced with the entire x-y plane. In this case,
Parseval’s theorem can be applied to calculate the data in terms
of the collimated beam exiting the Cassegrain objective, i.e.,
the data become independent of the focusing on to the detector
with

I(νj) ) ∫ ∫R2
|Q(sx, sy, νj)|2 dsx dsy (32)

Here the recorded signals are simply the total intensity of the
collimated beam emerging from the collection Cassegrain.

Relating Theory to Current Practice. The molecular inter-
pretation of recorded data in microspectroscopy typically follows
that of bulk spectroscopy, in which the recorded signal intensity
is often interpreted using the expression

IS(νj) ) |P(νj)|2TS(νj)exp[-4πνjk(νj)b] (33)

Here P(νj) is the illumination field amplitude, b is the effective
path length (nominally, the sample thickness for transmission and
twice the sample thickness for the transflection measurements),
and TS(νj) describes a net transmission or reflection coefficient.
To calculate absorption spectra, a background measurement
is first obtained,

I0(νj) ) |P(νj)|2T0(νj) (34)

where T0(νj) describes the transmission and reflection effects
for the experimental setup without the sample. The recorded
absorbance, A(νj), is obtained from the normalized spectrum,

A(νj) ) -log10[IS(νj)
I0(νj)]

) 4πνjk(νj)b
2.303

- log10[TS(νj)
T0(νj)] (35)

The molar absorptivity is defined as

a(νj) ) 4πνjk(νj)
2.303F

(36)

where F is the concentration of the absorbing species. Finally, in
the ideal case where the sample-free transfer function, T0(νj), is
equal to the transfer function with the sample, TS(νj), Beer’s
law

A(νj) ) a(νj)bF (37)

can be recovered from eq 35.
With comparison of eqs 35 and 37, it may be recognized that

the recorded absorbance spectrum should be corrected for optical
effects to recover analytically meaningful spectra that are inde-
pendent of the instrument and the sample geometry. Comparing
eq 33 with the rigorous model in the previous section, it should
be noted that the simple model does not fully take into account
the structure of the object (beyond the path length b) nor the
real part of the refractive index. These two factors are known to
lead to interference and dispersion effects in bulk-sample
spectroscopy.30,31 Restated, in the simple model the transmission
or reflection coefficient TS(νj) is considered to be independent
of the sample geometry and the properties of the sample and
substrate. The model of eq 33 also does not account for the
angle(s) of illumination and detection, this can be particularly
important in microspectroscopy, as focusing results in simulta-
neous illumination with waves of many incidence angles. The
impact of neglecting these factors on the data is apparent in the
simulations that follow. The various effects leading to spectral
distortions are identified and systematically quantified through
the use of the developed model.

In the rest of this article, the model described is first
experimentally validated using a benchmarking sample. The
effects of the focusing optics of the imaging system are then
isolated in simulation by considering a hypothetical idealized
sample that eliminates the sample-induced distortions described
by the second term in eq 35. Transmission and transflection
geometries using common substrates are then simulated and it
is seen that transflection measurements in particular are suscep-
tible to sample-induced distortions. These distortions are seen to
be exacerbated if a substrate of intermediate index is used. Further
sample-induced distortions are predicted if an air gap is present
between the substrate and the sample. Finally, the correspondence
between a simplified single-ray model and the fully focused model
is examined.

(30) Allara, D. L.; Baca, A.; Pryde, C. A. Macromolecules 1978, 11, 1215–1220.
(31) Zhang, Z. M. J. Heat Transfer 1997, 119, 645–647.
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To make predictions from the theoretical model, toluene is
used as a homogeneous sample of interest. Toluene exhibits
distinct and clearly identifiable absorption modes of varying
strength over the entire mid-IR region, making it an ideal sample.
In addition, toluene has a well characterized complex refractive
index32 [shown in Figure 6a] which is publicly available.33

Refractive index changes and anomalous dispersion34 in the
vicinity of absorption peaks can be clearly observed [e.g., see inset
in Figure 6a]. This variation of refractive index, in both the real
and imaginary parts, affects the recorded data. A simple illustration
of these effects is shown in Figure 6b, where the transmission
and reflection coefficients at an air-toluene boundary can be seen
to have structure influenced by the dispersive real index profile.

Experimental Validation of the Model. The model presented
here was validated by performing microspectroscopy measure-
ments on a well characterized benchmarking sample. The sample
was designed such that both transmission and transflection
measurements would result in significant signal. The model

should then be able to accurately predict both sets of data from
a single description of the sample-substrate system.

The sample was prepared by first forming a thin (≈75 nm)
germanium layer by sputter coating on a barium fluoride (BaF2)
disk. A common photoresist material, SU-8 2000.5 (MicroChem
Corp., Newton, MA), was spin coated to an approximate
thickness of 10 μm and pattern cured by UV exposure using a
standard USAF 1951 target (Edmond Optics, Barrington, NJ).
Postcuring, the entire sample was baked at 95 °C and developed
as per standard protocols.35 A postbake at 150 °C for 5 min
was performed to ensure complete polymerization and long-
term stability.

The sample data were recorded on a Varian Stingray system
using a mid-IR interferometer and microscopy with glass aper-
tures. A narrowband, liquid nitrogen cooled detector is used to
record spectra. Data are recorded at an undersampling ratio of 2
referenced to the He-Ne laser, zero-filled by a factor of 2, and
transformed using Happ-Genzel apodization. Single beam spectra
acquired for the sample (a position near the center of a larger
region of SU-8 and far from an transverse features) and back-
ground (a position with no SU-8) are subsequently converted to
absorbance spectra. Both transmission and transflection mode
data were acquired without perturbing the sample.

The SU-8 polymer is the sample layer to be characterized, while
the refractive indices are known for the thin germanium36 layer
and the barium fluoride37 substrate. Background single beam
spectra, Figure 7d, are recorded on a region of the sample without
SU-8, and the sample single beam spectra, Figure 7a, are recorded
on a region of the sample with SU-8. If absorbance calculations
are performed according to eq 35, the transmission and trans-
flection results, plotted in Figure 7c, are not consistent. Significant
interference effects are visible, and peak shapes, locations, and
heights can be seen to differ significantly, despite the fact that
the measurements were taken from the same sample.

To correctly interpret the data, it is necessary to include optical
effects, as modeled in this work. As a first step, the source
spectrum, |P(sx, sy, νj)|2 was determined from the background
measurement. It is assumed that the illumination is constant
across the entrance pupil so that the spectrum is not dependent
on sx and sy. The numerical aperture of the Cassegrain and the
Cassegrain obstruction were found to be best modeled as 0.40
and 0.26, respectively. The expected reflection and transmission
coefficients from the air, germanium, barium fluoride, air
system were calculated using the microspectroscopy model and
divided out (see eq 34). The resulting transmission and trans-
flection single beam spectra of the source are shown in Figure
7g. Since the instrument uses different optical paths for the
transmission and transflection measurements, these two source
spectra cannot be expected to be equal or proportional. It can,
however, be seen that the source spectral profiles are qualitatively
consistent, which was not the case before transmission and
reflection effects were considered, see Figure 7d.

Once the source profiles are established, a preliminary estimate
of absorbance can be found. Data were predicted by modeling
the sample index as purely real with n0(νj) ) 1.4017. The data

(32) Bertie, J. E.; Jones, R. N.; Apelblat, Y.; Keefe, C. D. Appl. Spectrosc. 1994,
48, 127–143.

(33) http://keefelab.cbu.ca/?page_id)19.
(34) Saleh, B. E. A.; Teich, M. C. In Fundamentals of Photonics; Wiley-

Interscience: New York, 1991; Chapter 5, pp 176-179.

(35) Processing Guidelines for SU-8 Permanent Epoxy Negative Photoresist. http://
www.microchem.com/products/pdf/SU-82000DataSheet2000thru2015Ver4.pdf.

(36) Barnes, N. P.; Piltch, M. S. J. Opt. Soc. Am. 1979, 69, 178–180.
(37) Malitson, I. H. J. Opt. Soc. Am. 1964, 54, 628–632.

Figure 6. The (a) complex refractive index of toluene32 and (b) the
magnitude of the normal-incidence complex transmission and reflec-
tion coefficients for an air-toluene boundary. The Supporting Infor-
mation includes graphs of the refractive indices of the other materials
considered in this article.
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predicted from the uniform index were used as an improved
background measurement which captures interference effects,
such as those seen in Figure 7a but not in the original
background measurement of Figure 7d. With the use of eq 35,
an estimate of the imaginary index k(νj) can be found from the
transmission data. Applying a Kramers-Kronig calculation38 to
k(νj) gives an estimate of the variations of n(νj) about the
underlying constant value n0(νj). The estimate of the refractive
index, n(νj) + ik(νj), is then used to predict the single beam
transmission spectrum. The difference between this prediction
and the measurement is then used to update the absorbance
and hence the imaginary index k(νj). By iteration of the
algorithmic cycle, (1) update the absorbance estimate from the
difference between the measured and predicted transmission
data; (2) calculate the complex refractive index from the
absorbance using Kramers-Kronig analysis; (3) calculate the

predicted transmission data using the model and the complex
refractive index of the polymer, it is possible to converge on
the complex refractive index of the polymer.39,40

The resulting complex index is plotted in Figure 7f and is used
to predict spectra for both transmission and transflection modes.
A good agreement, Figure 7b,e,h, is observed between the
predicted and observed data for both transmission and transflec-
tion. The errors that are observed can likely be attributed to factors
such as sample variations, unmodeled elements in the instrument
optical path, and/or sample tilt. In Figure 7i the absorbance
spectrum, free of optical effects, as calculated from the recorded
data is shown. The agreement between predictions and measure-
ments validates the model by demonstrating predictive power
based on a physical description of the sample.

In modeling the measurement of the benchmarking sample,
the refractive index of the cross-linked SU-8 layer was estimated.
This estimate shows good consistency with the noncross-linked(38) Kuzmenko, A. B. Rev. Sci. Instrum. 2005, 76, 083108.

Figure 7. Experimental data and quantities used in the modeling of the benchmarking sample: (a) the measured single beam spectra for the
substrate and sample (SU-8 polymer layer), (d) the measured single beam spectra for the substrate alone, (c) the absorbance as calculated
from the ratios of the single beam spectra using eq 35, (g) the source spectra |P(νj)|2, as calculated by compensating the background spectra
for the effects of the substrate, (b) the single beam transmission spectrum predicted by the model, compared to that measured, (e) the single
beam transflection spectrum predicted by the model, compared to that measured, (f) the residual differences between the plots in parts b and
e, (f) the complex refractive index calculated using the microspectroscopy model and Kramers-Kronig analysis, (i) the recovered absorbance
of SU-8, as calculated using the imaginary part of the refractive index shown in part f and eq 35.
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SU-8 measurements that appear in the literature.41,42 It should
also be noted that the background value of the refractive index,
n0(νj), the exact thicknesses of the SU-8 layer (12.43 μm), and
the exact thickness of the germanium layer (79 nm) were
estimated by minimizing the difference between the observed
and predicted data. The resultant values are consistent with
the specifications used in the manufacture of the sample. It
may be possible to further improve the model accuracy by
including effects such as the nonuniform illumination of the
Cassegrain aperture (e.g., the supports for the secondary
reflector obstruct a small portion of the aperture). Nevertheless,
the results presented here indicate that the level of modeling
proposed here can substantially help in understanding recorded
data as well as optical effects in IR microspectroscopy.

SIMULATION AND PREDICTION
Instrumentation Effects. In simulation, it is possible to separate

effects due to the sample and substrate and effects due to the
instrumentation. Here, this is first accomplished to investigate the
dependence of the measured spectra on the numerical aperture of
the imaging system. Sample-induced distortions can result from
changes in reflection and/or transmission coefficients between the
background and sample measurements, an effect represented in the
second term of eq 35. To eliminate these coefficient changes, one
can consider a nondispersive, weakly absorbing sample. Here the
imaginary part of the sample index, k(νj), is taken to be 1/100 of
the imaginary part of the index of toluene, and the real part of the
refractive index, n(νj), is taken to be 1. Note that this is not a physically
realizable material, as causality requires that changes in the absorp-
tion must necessarily be associated with changes in the real part of
the refractive index.43 However, the minimal perturbations of the
complex refractive index allow the isolation of instrument-induced
changes in the data.

A 200 μm thick layer of the sample is taken to be in direct
contact with a substrate of barium fluoride for transmission
measurements and with a substrate of gold in transflection
measurements. The background measurements are simulated
with only the substrate present. The large sample thickness, paired
with the weak absorption, results in absorbance data comparable
to those expected from an ideal measurement of a 2 μm thickness
of toluene. The indices of barium fluoride and gold are calculated
using published coefficients37,44 in a Sellmeier equation. It should
be noted that in this article the Sellmeier equation for the real
index of barium fluoride has been extended beyond the transmis-
sion window in order to allow a consistent comparison with
transflection systems for low wavenumbers. Numerical apertures
of 0.2, 0.5, and 0.9 (as in Figure 4) are simulated in both
transmission and transflection geometries and the illuminating
light is taken to be unpolarized. Note that for each NA the central
obscuration produced by the Cassegrain is taken to have a radius
covering 20% of the NA. The NA of 0.5 is similar to that available

in commercial microspectroscopy systems, while the NAs of 0.9
and 0.2 provide greater and lesser comparisons.

An estimate of the absorbance is found by evaluating eq 35,
and the results are displayed in Figure 8a. Note that the
absorbance has been normalized by the path length (in microme-
ters). In this idealized example, a good agreement between the
measured absorbance and the actual absorbance is expected.
However, overestimation of the absorbance by an amount that
increases with the numerical aperture is predicted. This apparent
violation of Beer’s law arises because of the increasing path length
through the sample associated with higher-angle rays, a phenom-
enon predicted by Blout et al.11 The procedure of Blout et al.
accurately predicts the errors of Figure 8a; however, a more
general correction procedure must account for a coupling between
measurements, sample structure, and all angles of incidence, a
set of phenomena explored further in the following simulations.

Sample-Induced Distortions. Next, consider a toluene
sample (i.e., with the index illustrated in Figure 6) on barium
fluoride for transmission measurements and on gold for trans-
flection measurements. To investigate the effect of sample-induced
distortions, measurements are simulated for a variety of sample
thicknesses. The background measurements are taken by replac-
ing the sample with a medium of the same thickness as the sample
but with index of n ) 1.47. These background measurements are
designed to represent an optimistic case, where Fabry-Perot type
fringing effects in the background cancel similar effects in the
sample measurement, giving a relatively good match between
TS(νj) and T0(νj) (see eq 35). Hence, experimentally observed
data will contain additional fringes arising from purely optical
effects. Various methods have been proposed for correction of
fringes.45 It must be noted, however, that explicitly accounting
for physical effects is likely to be more accurate than signal
processing methods alone, as was shown in Figure 7. The
illuminating light is taken to be unpolarized, while the NA of the
system is modeled as 0.5 (with a central NA of 0.1 obscured by
the secondary Cassegrain reflector).

The simulation results are shown in Figure 8b. In the
transmission experiments, the estimates of absorbance are
reasonably accurate. In transflection, however, errors in peak
position, peak height, and band shape are predicted in the
absorption spectra. Such distortions have also been observed
experimentally.46 As a consequence of the dispersion quantified
by the Kramers-Kronig relations,43 strong absorption peaks are
accompanied by sharp changes in the real refractive index (e.g.,
see Figure 6). This results in a significant difference between the
coefficients T0(νj) and TS(νj) seen in eq 35 and leads to distortions.
Furthermore, when the sample thickness is on the scale of the
wavelength, reflected and transmitted components interfere,
resulting in a complicated interplay of dispersion, sample geom-
etry, and absorption. The differences in the predicted spectra with
sample thickness stem from these phenomena.

(39) Hawranek, J. P.; Jones, R. N. Spectrochim. Acta 1976, 32A, 99–109.
(40) Hawranek, J. P.; Neelakantan, P.; Young, R. P.; Jones, R. N. Spectrochim.

Acta 1976, 32A, 85–98.
(41) Tan, T. L.; Wong, D.; Lee, P.; Rawat, R. S.; Patran, A. Appl. Spectrosc. 2004,

58, 1288–1294.
(42) Tan, T. L.; Wong, D.; Lee, P.; Rawat, R. S.; Springham, S.; Patran, A. Thin

Solid Films 2006, 504, 113–116.
(43) Toll, J. S. Phys. Rev. 1956, 104, 1760–1770.

(44) Ordal, M. A.; Long, L. L.; Bell, R. J.; Bell, S. E.; Bell, R. R.; Alexander,
R. W., Jr.; Ward, C. A. Appl. Opt. 1983, 22, 1099–1120.
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2nd ed.; Wiley-Interscience: Hoboken, NJ, 2007; Chapter 11.1.3, pp 253-
255.
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Sample-Induced Distortions for Substrates of Intermedi-
ate Index. The appearance of the dispersion profile (the real part
of the refractive index) in absorption microspectroscopy measure-
ments has been described.13-15 It was noted that the estimate is
more susceptible to this consequence of dispersion in transflection
mode or when, for example, a higher-index substrate is used in

transmission. The dispersion influence can be explained, at least
in part, by effects such as those predicted in Figure 8a. Romeo
and Diem13 also observed a similar feature at sample edges; this
phenomenon is investigated in the follow-up article.22

If both the transmission and transflection substrates are
germanium (with background measurements taken on the bare

Figure 8. (a) Predicted absorbance for an idealized thick, low-absorption sample, normalized by the path length (in micrometers). Data are
plotted for both transmission and transflection modalities (and for a range of numerical apertures) as differences from the ideal absorbance
profile. In transmission, the substrate is barium fluoride, and in transflection, the substrate is gold. (b) Predicted path-length-normalized absorbance
deviations for a toluene sample and a range of sample thicknesses. In transmission, the substrate is barium fluoride, and in transflection, the
substrate is gold. (c) Predicted path-length-normalized absorbance deviations for a toluene sample and a range of sample thicknesses. In both
transmission and transflection, the substrate is germanium. (d) Predicted path-length-normalized absorbance deviations when there is an air
gap between the sample and the substrate. The air gap thickness is varied, while in all cases the sample thickness is 2 μm. In transmission, the
substrate is barium fluoride, and in transflection, the substrate is gold. The absorbance spectra used to calculate the deviations shown here are
plotted in the Supporting Information.
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germanium), the spectra predicted are shown in Figure 8c. The
refractive index of germanium was calculated using published
coefficients36 for a Sellmeier model, and all other simulation
parameters are the same as for Figure 8b. The germanium
substrate can be seen to give seemingly confounding results; the
transflection spectra have severe distortions including negative
values of absorbance that are not physically realizable, while the
transmission spectra have distorted band shapes and amplitudes.
Hence, it is clear that the high index of germanium makes it
unsuitable for accurate transmission or transflection measure-
mentsswithout corrections for optical distortions. An ideal trans-
mission substrate has an index matched to the sample, while an
ideal transflection substrate is, for example, a strong conductor.
At the toluene-germanium boundary both the transmission and
reflection coefficients are significant and both are relatively
sensitive to the sample index. As a result, the real part of the index
is strongly coupled into the measurement. This coupling is
particularly noticeable in the transflection measurement and
results in apparently negative absorbance measurements. The
transflection simulations of Figure 8b,c illustrate how the pre-
sented framework can be used to examine spectral distortions
introduced in the transflection modality and suggests how explicit
optical modeling may be useful in the design of transflection
substrates.

Air-Gap-Induced Distortions. It is not uncommon in the
mounting of a sample on the substrate to introduce a small air
gap between the two; alternatively, the sample itself may contain
a void. In Figure 8d, spectral distortions caused by such voids
are shown for a variety of air gaps. The sample material is again
toluene, and the background measurements are taken without
accounting for the gap. Significant changes in peak shape,
amplitude, and position can again be seen in transflection. The
distortions are less severe in transmission although a significant
nonzero baseline is observed. Findings consistent with these
simulations have been reported with an underlying Matrigel layer
and observed to depend on layer thickness14 as seen here.
However the effect was in that work attributed to a scattering effect
based on a qualitative analysis. An alternative qualitative analysis
attributes distortions to contributions from reflections from the
top surface of a sample.15 It was also reported by Romeo and Diem
that poorly adhered or thin samples may produce a dispersive
line shape,13 consistent with results shown in Figure 8d. The
rigorous model developed here accounts for both the observed
results in a quantitative manner, as well as acting as a guide to
understand potentially confounding effects in sample preparation. An
understanding of this effect is especially relevant to cytological
analyses in which single cells are analyzed for malignancy. Sample
preparation becomes critical in those applications and has been
reported to be a major challenge in developing IR microscopy for
cytology.47 The effect on tissue samples can be expected to be less
drastic, as individual cell spectra are usually less important within
the greater tissue structure, and both the spectral and spatial
organization of the cells can be employed for effective diagnoses.48

Comparison with Bulk (Macro) Spectroscopy. The simula-
tions presented above have shown how sample structure and the
real (dispersive) part of the refractive index affect the recorded

spectral data. These effects produce apparent deviations from
Beer’s law if the simple model of eq 33 is applied. The importance
of optical effects has been recognized for some time,49-51

particularly in reflection-based modalities, and algorithms38,52,53

have been developed to calculate the complex refractive index
from certain types of data measured in bulk spectroscopy. In
systems without tight focusing, this type of approach has been
applied to correct for the apparent artifacts21,39,40,54-59 and should
be used where possible. In addition to general interference and
dispersion effects (as observed without tight focusing in bulk-
sample spectroscopy), the model developed in this work takes
into account optical effects produced by the tightly focused
illumination and collection of light. If focusing effects are negligible
in comparison with the effects already modeled in bulk spectros-
copy, it can be expected that existing correction algorithms will
interpret microspectroscopy data correctly.

Figure 9 shows the difference between the focused-model, 2 μm-
air-gap data of Figure 8d and those calculated for the same sample
but using a single representative ray path (i.e., a model without
focusing). For the transmission system, the representative ray path
is taken to be at normal incidence, and for the transflection system,
the median reflected path is chosen. The single-ray approach does
not capture effects due to focused path length difference [as
illustrated in Figure 8a] and, as seen in Figure 9, will not fully capture
the behavior of the tightly focused system. For this example, the

(47) Romeo, M.; Mohlenhoff, B.; Diem, M. Vib. Spectrosc. 2006, 42, 9–14.
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2007, 61, 1390–1397.
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1216.
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Cryst. Solids 2000, 275, 72–82.
(59) Moore, D. S.; McGrane, S. D.; Funk, D. J. Appl. Spectrosc. 2004, 58, 491–

498.

Figure 9. Magnitude of the difference between the data predicted
in Figure 8d (for an air gap of 2 μm thickness) and the data predicted
using a comparable single ray model.
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single-ray simplification produces errors in the transflection system
in particular. It is noteworthy that contemporary instruments can
produce signals with low enough noise to observe absorbance values
in the 10-1 to 10-4 range. Hence, these errors are significant, and
the detailed model developed here should be used.

Differences between the focused and single-ray models arise
from the angular dependence of the light-sample interaction. The
difference between the full model spectrum and that predicted
using a single ray model is shown in Figure 9. It is seen that this
angular dependence can be significant, particularly around regions
of high absorption. For the simpler samples considered in Figure
8b (i.e., air-sample-substrate systems with no air gap), the
angular dependence is less critical and gives maximum path
length-normalized absorbance errors of 0.0044 in transmission and
0.011 in transflection, as compared to maximum errors of 0.0046
and 0.11 in transmission and transflection, respectively, in Figure
9. Conversely, many-layer sample-substrate systems, with com-
parable transmission and reflection coefficients at layer bound-
aries, may be highly sensitive to incidence angle and hence to
focusing effects. In Figure 10, a comparison between ray-based
and focused models for the experimental benchmarking system
(see Figure 7) is presented. For this more complicated sample-
substrate system, the use of the ray-based model introduces
significant errors. Focusing effects therefore play a very significant
role when modeling the benchmarking sample used in the
experimental validation of the model.

The analyses presented here should be used as a guide to
estimate the precision in the data. The first implication is that
the choice of sampling mode and/or substrate greatly influences
the magnitude and form of systematic error introduced into the
measurement. A second result demonstrates that there is a
dramatic difference in the precision achievable by transmission
mode and transflection mode microspectroscopy. The distortion
is nonlinear and not trivial to correct. One practical implication is

that the noise in the data acquired must be no smaller than the
observed deviation from the true spectrum. Any further reduction
in noise would make the analytical conclusions limited by
systematic distortions and not random noise. In general, the
presented theoretical framework should be considered a starting
point for detailed optical modeling in specific studies. In biomedi-
cal applications, where spectral assignments are challenging and
spectral changes are small, detailed modeling can be expected to
be important in understanding biochemical changes accurately.

CONCLUDING REMARKS
A mathematical model for mid-IR microspectroscopy has been

derived by solving Maxwell’s equations in layered media and for
focused illumination and detection. Predictions given by this model
are consistent with experimental results and with observations
reported in the literature. It is seen that the interplay of focusing,
the sample geometry, and strong dispersion fully accounts for the
spectral response and apparent artifacts for simple homogeneous
systems. Additional spectral effects that are produced by scattering
within heterogeneous materials are addressed in part II of this work.

The model developed here can be applied to both transflection
and transflection collection geometries. While transmission spectra
demonstrated some robustness to distortions, transflection sys-
tems were seen to be particularly sensitive to focusing, dispersion,
and sample-structure induced distortions. Ideally the distortions
observed may be corrected by mathematically inverting the
developed model, in order to estimate optical constants of the
sample directly. However, in many cases of interest, the sample
structure (i.e., the materials present in sample layers and the layer
thicknesses) may not be known. This complicates the inversion
process, as the sample geometry must be coestimated with the
optical constants of the material of interest.

Spectral distortions due to sample structure (e.g., interference
between interfaces) and dispersion have previously been reported
for systems that do not employ tight focusing. The model
presented here describes tightly focused fields throughout the
sample and also predicts focusing dependent distortions that may
impact the measured spectra for certain sample geometries. In
comparison to typical experimental noise in modern IR microspec-
troscopy systems, the effects were found to be significant.
Consequently, the model described provides a means to under-
stand distortions that may limit the analytical capability of IR
microspectroscopy.
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Theory of Mid-infrared Absorption
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Fourier transform infrared (FT-IR) spectroscopic imaging
combines the specificity of optical microscopy with the
spectral selectivity of vibrational spectroscopy. There is
increasing recognition that the recorded data may be
dependent on the optical configuration and sample mor-
phology in addition to its local material spectral response,
but a quantitative framework for predicting such depen-
dence is lacking. Here, a theory is developed to relate
recorded data to the spectral and physical properties of
heterogeneous samples. The modeling approach com-
bines optical theory through rigorous coupled wave analy-
sis with modeling of sampling geometry and sample
structure. The interplay of morphology and dispersion are
systematically explored using increasingly sophisticated
samples to illustrate the dependence of the detected
optical intensity on the spatial sample structure. Predic-
tions of spectral distortions arising from the sample
structure are quantified, and experimental validation of
the developed theory is performed using a microfabricated
standard from a commercial photoresist polymer. The
developed framework forms a basis for understanding
sample induced distortions in spectroscopic IR micros-
copy and imaging.

Fourier transform infrared (FT-IR) spectroscopic imaging is a
rapidly emerging technology that combines the spatial specificity
of optical microscopy with the chemical selectivity of vibrational
spectroscopy.1-4 It is commonly misconceived that FT-IR imaging
is a simple extension of conventional infrared spectroscopy using
a different sampling accessory, namely a microscope. From the
optics perspective, similarly, it is tempting to conclude that FT-IR
imaging is an extension of optical microscopy with discrimination
of IR light by wavelength. In this series of articles, it is shown
that neither characterization is accurate. In the previous article,5

optical theory for IR microscopy was developed and it was
demonstrated that the combination of the sample-substrate
structure and optical configuration can result in significant
distortions in data recorded from homogeneous samples. Briefly,
optical theory was applied to model interrogation of a sample that
was assumed to consist of a homogeneous layer in a sample-
substrate structure with no transverse variation. The sample was
characterized by upper and lower boundaries and by the frequency
dependent complex relative permittivity ε(νj), or equivalently, by
a constant complex refractive index.

In this article, the analysis is extended to heterogeneous
samples that vary in the lateral sample plane. The sample is
characterized by upper and lower boundaries as well as a
transverse structure defined by permittivity, ε(x, y, νj). An example
of this type of structure is shown in Figure 1. While the sample
has nontrivial structure in the imaging plane, it is assumed to be
piecewise constant as a function of depth. Such a model is
appropriate for thin samples as are usually encountered in IR
microspectroscopy. This structure is amenable to analysis through
coupled wave theory. The notation used here is consistent with
the first article5 and is also listed in the glossary of Table S1 in
the Supporting Information.

In the earliest studies,6 it was noted that heterogeneous sample
structure distorts both the apparent spectrum and the apparent
spatial structure in FT-IR imaging. Other authors have also
attributed spectral distortions to heterogeneous sample structure.7-9

While experiments10 demonstrated that distortions arose from a
mismatch of refractive index between domains in the sample, a
complete theoretical model to predict the effects of heterogeneous
samples on observed spectra and spatial structure has not been
presented. The absence of such a model can lead to misinterpreta-
tion of spatial structure and/or spectral changes observed at the
boundaries of domains. The full analytical capability of FT-IR
imaging can only be realized through proper modeling of the
optical physics of the combined sample-instrument system. These
models help, first, to understand the true spectral and structural
content of the data. Second, they help provide measures of the
systematic error due to distortions. Studies that claim chemical
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or structural changes at edges of domains might employ the model
reported here to verify that the magnitude of those changes is
indeed larger than those due to optical effects alone. In this article,
optical theory for analysis of heterogeneous structures in mid-IR
imaging is developed. The variation of certain parameters in the
model is predicted to lead to specific distortions. Predictions are
compared to experimental data.

THEORETICAL MODEL
In the preceding work,5 it was shown that each planewave

mode of the electric field (indexed by the propagation directions
sx and sy) may be propagated through the sample-substrate
system independently. When transverse sample structure is
introduced this is no longer true. Optical effects such as
scattering and refraction induce coupling between the modes.
These effects are calculated below using rigorous coupled wave
analysis,11-13 which was originally developed for modeling
diffraction gratings. While there are alternative methods which
could be used to solve the problem at hand,14-16 coupled wave
analysis provides a clear description of how the transverse
structure of the object couples planewave modes. The coupled

wave method is also widely used, and the associated numerical
implementation is well studied.17 In the following presentation,
rigorous coupled wave analysis is briefly described and applied
to the mid-IR imaging problem in order to explain artifacts, for
example, from edge scattering.

It is assumed that the transverse area of interest in the sample
is some finite range Λx × Λy in Cartesian coordinates x, y. The
object within this range can then be represented in the Fourier
series

ε(x, y, νj) ≈ ∑
p)-NU

NU-1

∑
q)-NW

NW-1

φp,q(νj) exp[i(pUx + qWy)] (1)

where U ) 2π/Λx and W ) 2π/Λy. The Fourier series has been
truncated to 2NU terms in the x direction and by 2NW terms in
the y direction. Note that this representation repeats the object
periodically outside the region of interest. However, the
problem is formulated below so that light is focused into the
single period Λx × Λy with negligible intensity outside this area.

The reciprocal of the permittivity is well-defined and will be
useful in the analysis below. This function can also be represented
as the Fourier series,

[ε(x, y, νj)]-1 ≈ ∑
p)-NU

NU-1

∑
q)-NW

NW-1

ψp,q(νj) exp[i(pUx + qWy)]

(2)

As with the first article,5 the incident field is decomposed into a
collection of constituent planewaves. Each individual planewave
component is infinite in extent and thus impinges on the periodic
extension of the sample structure. A localized response is
generated by summing over the planewave spectra near the end
of the calculation, but for intermediate steps, it is useful to be
able to appeal to the formal periodicity.

Consider an incident planewave with Cartesian transverse
spatial frequency components δ and σ, that is, a field proportional
to exp[i(δx + σy)] in a fixed z plane. The spatial periodicity of the
sample implies that the scattered field consists only of planewave
components with transverse spatial frequencies that are shifted
from those of the incident field by integer multiples of the
constants, U and W. Explicitly,

up ) pU + δ (3)

wq ) qW + σ (4)

That is, through interacting with the sample, an incident planewave
with transverse frequencies δ and σ must give rise to planewaves
with transverse dependence of the form exp[i(upx + wqy)], due
to the translational periodicity of the problem. At p ) q ) 0,
the undiffracted component is obtained and all other values
represent diffracted modes.

For reasons similar to those given above, the field in any fixed-z
plane of the sample must be composed of fields with the same
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Figure 1. An illustration of the type of sample and substrate
geometry considered in this article. Here the sample (a slab of finite
extent) is illuminated through a substrate. The sample layer is defined
by the permittivity ε(x, y, νj), and the region of interest is of width Λx

in the x direction. In contrast to the previous article, the sample may
scatter light outside of the illumination angles.
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transverse frequencies given in eqs 3 and 4. Therefore, in the
sample layer (indexed by layer l ) Δ), between z(Δ-1) and z(Δ),
the electric field vector can be written in the form

E(Δ)(x, y, z, νj) ) ∑
p

∑
q [Xp,q(z, νj)

Yp,q(z, νj)
Zp,q(z, νj) ] exp[i(upx + wqy)]

(5)

Note that while the Fourier transform of the object function was
truncated in eq 1, the field resulting from scattering from this
approximation to the object need not be similarly band-limited.
However, it is necessary in the numerical calculation of
E(Δ)(x, y, z, νj) to make a potentially different truncation of eq
5. This truncation is made such that the diffracted-field coefficients
Xp, q(z, νj), Yp, q(z, νj), and Zp, q(z, νj) have decayed to a negligible
level before the truncation point.

In the inhomogeneous sample layer, the magnetic field is
nontrivially related to the electric field (c.f., the relationship in a
homogeneous layer18). Hence it will be convenient to describe
the magnetic field separately as

H(Δ)(x, y, z, νj) ) �ε0

μ0
∑

p
∑

q [ Ip,q(z, νj)
Jp,q(z, νj)
Kp,q(z, νj) ] exp[i(upx + wqy)]

(6)

In the homogeneous layers, e.g., in the substrate or in the
homogeneous sample addressed in the preceding article, each
component of the planewave spectrum of the field can be
propagated independently and the results can be summed to find
the field at any given plane.19 In the structured sample considered
here, the relationship between fields in distinct transverse planes
is more complicated and this is reflected in the very general
dependence of eqs 5 and 6 on z. The evolution of the electric and
magnetic fields with z is found using the Maxwell-Faraday
equation and Ampère’s circuital law. With the use of the time
harmonic form and the fact that c ) 1/(ε0μ0)1/2, these can be
written

∇ × E(r, νj) ) i2πνj�μ0

ε0
H(r, νj) (7)

∇ × H(r, νj) ) -i2πνjε(r, νj)�ε0

μ0
E(r, νj) (8)

Substituting eqs 5 and 6 into eq 7 and equating coefficients for
each transverse frequency pair (up, wq) results in the equations

dXp,q(z, νj)
dz

) i2πνjJp,q(z, νj) + iupZp,q(z, νj) (9)

dYp,q(z, νj)
dz

) -i2πνjIp,q(z, νj) + iwqZp,q(z, νj) (10)

Kp,q(z, νj) ) 1
2πνj

[upYp,q(z, νj) - wqXp,q(z, νj)] (11)

Substituting eqs 1, 5, and 6 into eq 8 and equating transverse
frequency pairs for the x and y components of the vector equation
gives the equations

dIp,q(z, νj)
dz

) -i2πνj∑
p''

∑
q''

φp-p'',q-q''(νj)Yp'',q''(z, νj) +

iupKp,q(z, νj) (12)

dJp,q(z, νj)
dz

) i2πνj∑
p''

∑
q''

φp-p'',q-q''(νj)Xp'',q''(z, νj) + iwqKp,q(z, νj)

(13)

Equating transverse frequency pairs, the z component in eq 8 can
be found by first dividing both sides of the equation by ε(r, νj).
The expression for the reciprocal of ε(r, νj), eq 2, can then be
used to give

Zp,q(z, νj) ) - 1
2πνj{∑

p''
∑
q''

ψp-p'',q-q''(νj)[up''Jp'',q''(z, νj) -

wq''Ip'',q''(z, νj)]} (14)

The results seen in eqs 9-14 determine how the electric and
magnetic fields propagate through the sample layer. The depen-
dence on Kp, q(z, νj) and Zp, q(z, νj) can be eliminated by substitut-
ing eq 14 into eqs 9 and 10 and eq 11 into eqs 12 and 13. The
result is four sets of coupled first-order differential equations. The
(up, wq) frequency pairs retained in eqs 5 and 6 are then placed
in a one-dimensional ordering, indexed by m. Using this one-
dimensional ordering, each set of functions can be arranged as a
NF × 1 column vector, where NF is the number of terms
retained. These vectors can then be concatenated and the
system of differential equations written in the form

[dX(z, νj)
dz

dY(z, νj)
dz

dI(z, νj)
dz

dJ(z, νj)
dz

] ) i2πνjΦ(νj)[X(z, νj)
Y(z, νj)
I(z, νj)
J(z, νj)

] (15)

where Φ(νj) is a 4NF × 4NF matrix. For convenience, the
dependence of Φ on νj is suppressed for the remainder of this
work.

The form20 of Φ guarantees that eigenvalues come in
pairs of opposite sign, i.e., the eigenvalues of Φ can be de-
noted by ±γ1, ±γ2, . . . , ±γ2NF. The eigenvectors of Φ are
g1, h1, g2, h2, . . . , g2NF, h2NF, where the vector gj is associated
with the eigenvalue γj and the vector hj is associated with
-γj. The eigenvalue γj is taken to lie in the upper half of
the complex plane, that is γj is chosen such that its imaginary

(18) Equation 2 in ref 5.
(19) Equation 4 in ref 5. (20) Equation 57 in ref 17.
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part is positive. Note that for purely real eigenvalues, +γj

will be chosen to be positive.
Finding the eigenvalues and eigenvectors of Φ allows the

matrix to be decomposed in the form

Φ ) GΓG-1 (16)

where Γ contains the eigenvalues on the diagonal and is zero
elsewhere, and the vectors gj and hj are organized to form the
corresponding columns of G.

An uncoupled set of 4NF first order differential equations can
be written as a single matrix equation dV(z)/dz ) i2πνjΓV(z),
where V(z) is a 4NF × 1 vector. Such a set of equations is easily
solved (each equation can be solved individually) and the result
used to construct a solution of eq 15. That solution can be
constructed as GV(z) so that

Xm(z, νj) ) ∑
j)1

2NF

{
j gj,m exp[i2πνjγj(z - z(Δ-1))] +


̂j hj,m exp[-i2πνjγj(z - z(Δ))]} (17)

Ym(z, νj) ) ∑
j)1

2NF

{
j gj,m+NF
exp[i2πνjγj(z - z(Δ-1))] +


̂j hj,m+NF
exp[-i2πνjγj(z - z(Δ))]} (18)

Im(z, νj) ) ∑
j)1

2NF

{
j g j,m+2NF
exp[i2πνjγj(z - z(Δ-1))] +


̂j hj,m+2NF
exp[-i2πνjγj(z - z(Δ))]} (19)

Jm(z, νj) ) ∑
j)1

2NF

{
j gj,m+3NF
exp[i2πνjγj(z - z(Δ-1))] +


̂j hj,m+3NF
exp[-i2πνjγj(z - z(Δ))]} (20)

where gj, m is the mth element of the vector gj, hj, m is the mth
element of the vector hj, and 
j and 
̂j are, as yet undetermined,
coefficients. The field in the sample layer is determined by eqs
17-20, with the z-polarized components given by eqs 11 and 14.
The sample structure determines the values for γ, gj,m, and hj,m

through the eigenvalue decomposition of Φ. The 4NF remaining
coefficients (2NF
j coefficients and 2NF
̂j coefficients) are set
by boundary conditions, i.e., the illuminating field determines
these values.

A representation of the field in the homogeneous layers (e.g.,
the air surrounding the substrate and sample and the substrate)
has been described elsewhere19 and can be rewritten as

E( l )(x, y, z, νj) ) νj ∑
m)1

NF

{B( l )(m, νj) exp[i2πνjsz
( l )(m, νj)(z - z(l-1))]

+ B̂( l )(m, νj) exp[-i2πνjsz
( l )(m, νj)(z - z( l ))]} ×

exp[i(up(m)x + wq(m)y)] (21)

The modes of the field in the homogeneous layers are here
indexed by m, whereas in the previous article5 they were indexed

by the transverse propagation quantities sx and sy. Writing the
modes in the manner above allows the field in the homoge-
neous layers to be matched to the field in the sample. The
relationship between m and sx and sy is

sx(m, νj) )
up(m)

2πνj
) p(m)

Λxνj
+ δ (22)

sy(m, νj) )
wq(m)

2πνj
) q(m)

Λyνj
+ σ (23)

where p(m) and q(m) describe the one-dimensional ordering of
(p, q) onto m. These equations describe the relationship between
the periodicity of the object (Λx and Λy) and the transverse
propagation direction. The axial propagation factor sz

( l ) (m, νj)
is calculated from a dispersion relation.21 In contrast to the
homogeneous layers, at a given transverse spatial frequency,
the field in the transversly inhomogeneous sample consists of
contributions of different axial propagation constants [compare
sz

( l ) (m, νj) in eq 21 to γj in eqs 5, 6, and 17-20].
The field in a homogeneous layer is determined by the vectors

B( l ) (m, νj) and B̂( l ) (m, νj). Just as 4NF coefficients (
j and 
̂j)
determine the field in the sample layer, transversality condi-
tions22 reduce the 6NF elements of B( l ) (m, νj) and B̂( l ) (m, νj)
to 4NF independent parameters. Thus, for a sample with L
layers, 4LNF parameters fully describe the field. As with
the case considered in the preceding article, continuity of the
transverse electric and magnetic fields can be enforced at the
boundaries for each transverse spatial frequency to give 4(L
- 1)NF independent constraints. By construction, illumination
comes from only one side of the sample so the condition

B̂(L)(m, νj) ) 0 (24)

eliminates another 2NF unknowns. The remaining 2NF param-
eters are determined by setting the illumination vectors
B(1)(m, νj), as described in the first article.5 The detection of
light scattered from the sample is also the same as in the
previous article.

For the homogeneous layers considered in the first article,
the continuous plane wave spectra19 could be evaluated numeri-
cally by discretizing the transverse propagation cosines sx and sy

on any grid. In the formulation described here, a natural
discrete grid is set by the periodic extension of the object on
length scales Λx and Λy (note that these may be chosen such
that the focused light is localized within a single period). This
grid may be more coarse than desired, particularly for small
values of νj. However, the discretization of the incident field in
the planewave basis, that is the discretization of (sx, sy) in eqs
22 and 23, may be performed for multiple values of (δ, σ). The
resulting fields for each value of (δ, σ) may be summed, giving a
discretization of (sx, sy) on an arbitrarily fine grid, that is at least
as fine and commensurate with the descretization dictated by
Λx and Λy.

SIMULATION AND PREDICTION
Numerical simulations are presented here to demonstrate how

diffraction and scattering effects in heterogeneous samples are

(21) Equation 5 in ref 5
(22) Equations 6 and 7 in ref 5.
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coupled to the sampling geometry, sample morphology, and
spectral profile of the sample such that the bulk or so-called “pure
phase” spectrum is changed. In the preceding article, it was seen
that transmission microspectroscopy is less sensitive to optical
distortions than transflection microspectroscopy when a homo-
geneous layered sample is considered. Further, an overwhelming
majority of studies using IR imaging are conducted in the
transmission mode.23 For these reasons, the transmission mode
is considered exclusively in the following examples. The extension
to transflection is straightforward.

Measurements from two samples are simulated to demonstrate
the potential distortions and estimate their magnitude in a first
principles manner. In the first example, an object whose response
is constant across all wavelengths is considered. Investigation of
focused fields in the sample and at the detector illustrates how
the spatial structure of the sample affects measurements, inde-
pendent of the influence of spectral changes. In the second
example, full spectral data are simulated for a hypothetical sample
of spatially structured toluene, illustrating the increased complexity
when spectral variations are added to the sample structure. Effects
resulting from the spatial structure of the sample can be seen,
and the associated influence on recorded spectra are investigated.
In both examples, the effect of an edge on the microspectroscopy
data is further investigated. While sensitivity to only the imaginary
(absorptive) part of the refractive index is desired, the thickness
of the sample and the real part of the refractive index are both
seen to affect the data through scattering and diffraction. These
effects result in changes in the observed spectral features,
including changes in the absorption band profiles and peaks and
also changes in the ratios between absorption peaks, which are
all quantified.

Frequency-Invariant Sample. In this first example, the
sample material considered has no variation in optical response
as a function of wavelength. By investigation of the interaction of
this sample with focused light of differing wavelengths, some basic
behaviors of the microspectroscopy system can be identified. The
sample considered is a rectangular slab of absorbing material with
index n ) 1.4 + 0.07i mounted on a substrate of index 1.45 (i.e.,
the geometry shown in Figure 1). The slab is 100 μm wide in the
x direction and of infinite extent in the y direction, and various
thicknesses b in the z direction are considered. The area of interest
is taken to be Λx ) 200 μm wide in the x direction and infinite
in the y direction. The sample is illuminated through the
substrate with a y-polarized line-focus. A line-focus is con-
structed by considering only the sy ) 0 line of the aplanatic
Cassegrain angular spectrum.24 A Cassegrain with numerical
aperture of 0.5 and a central obscuration aperture of 0.1 is
considered. In representing both the object and the field, 200
Fourier series coefficients were retained, i.e., NU ) NF ) 200.
This level of detail gives sharp edges in the representation of
the sample, while increasing the number of Fourier terms did
not significantly change the simulation results, indicating that
200 coefficients are sufficient to represent the field. The offsets
(δ, σ) were dithered so that there were at least 50 sample points
within the numerical aperture of the Cassegrain for all values

of νj. The angular spectrum from this discretization level leads
to a smooth and reasonable focused field.

The line-focus is centered on the absorbing slab in Figure 2.
It should be noted that refraction in the substrate has the effect
of shifting the nominal focal point.25 Hence, the sample and
substrate have been moved in the axial direction here so that
focusing is achieved in the sample plane. This wavelength-
dependent (chromatic) shift of the focus has been noted to be a
significant problem for dispersive substrates.25,26 Here it is noted
that the substrate also introduces aberration,25,27 as can be seen
by comparing the fields of Figure 2 to fields without a substrate
(Figure S1 in the Supporting Information). When the line-focus
is positioned between the absorbing slabs, the results of Figure
3 are obtained, while focusing onto the edge of a slab gives the
fields shown in Figure 4.

Several comments apply to all three line-focusing cases. Since
the sample and illumination have no spatial variation with y and
the illuminating light is y-polarized, the field in the sample is also
strictly y-polarized. Thus the plots shown are a complete repre-
sentation of the field. The theory does encompass more general
cases, e.g., x-polarized illumination or two-dimensionally focused
fields, but the resulting vector fields are more challenging to
display. The magnitude of the angular spectrum By

(3)(sx, νj) is
shown in subplots j-l. These spectra can be interpreted as
representations of the field strength as a function of direction
of propagation. The fine oscillations observed in many of these
functions can be attributed to interference between unscattered
light and contributions scattered from edges of the slab. Any
components of the angular spectrum that lie outside the
collection angle of the detection Cassegrain are not collected
upon detection. This range is marked by the empty instrument
response (i.e., the instrument response with no sample or
substrate), in this case 0.1 < |sx| < 0.5. Any light diffracted
outside the collection range leads to an apparent absorption,
as this light is not detected. It should also be noted that any
components at |sx| > 1 correspond to waves that are evanescent
in free space and do not propagate to the detector. The intensity
of light on the detector plane can be calculated from the
emerging angular spectra, as described in the previous article.

For illumination focused into the center of the slab, fields
within the sample and the transmitted angular spectra are shown
in Figure 2. The penetration of the field through the sample is as
expected, thicker samples produce more attenuation and longer
wavelengths (i.e., lower values of νj) are more weakly absorbed.
Standing wave effects due to reflection off the top of the sample
are also clearly visible. For the thin sample (b ) 2 μm) it can be
seen that there is minimal loss of intensity due to diffraction out
of the collection optics, while for thicker samples more light
escapes the collection cone. It should be noted that recorded
spectra in microspectroscopy are usually of lower signal-to-noise
ratio than the bulk recording case. Hence, absorbance of samples
is sought to be maximized by adjusting the sample thickness such
that the absorbance is maximized in the linear regime of Beer’s
law. The typical thickness for most samples is 5-10 μm and
feature sizes in many composites and biomedical samples are of

(23) Koenig, J. L.; Wang, S.-Q.; Bhargava, R. Anal. Chem. 2001, 73, 360A–
369A.

(24) Figure 4 in ref 5.

(25) Carr, G. L. Rev. Sci. Instrum. 2001, 72, 1613–1619.
(26) Wetzel, D. L. Vib. Spectrosc. 2002, 29, 291–297.
(27) Török, P.; Varga, P.; Laczik, Z.; Booker, G. R. J. Opt. Soc. Am. A 1995, 12,

325–332.
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a similar order of magnitude. The unfortunate coincidence of order
of magnitude for wavelengths, sample features, and optimal path
length has an impact on the recorded data for most cases. As
this simulation demonstrates, a trade-off between random error
and systematic distortion due to optical effects may be avoided in
some cases by using thinner samples.

In Figure 3 the same system is considered but with the
illuminating light focused between two slabs. There is little light
incident on the absorbing material and, apart from a reflection at
the substrate boundary, the focused illumination passes through

the system largely unperturbed. However, for the thicker samples
some scattering effects can be seen in the resulting angular
spectra. This illustrates how the optical effects produced by an
edge may have a wider region of influence for thicker samples.
The implication for a heterogeneous material is that the influence
of domains could extend well beyond their obvious morphologic
boundaries and proximal regions in a manner that is coupled to
the thickness of the sample. While dual aperturing is used in point
microspectroscopy to alleviate these effects to some degree, they
will be readily apparent in full-field of view imaging.

Figure 2. Responses for a line-focused y-polarized field incident on the center (x ) 0) of an absorbing slab. The slab has a complex index 1.4
+ 0.07i and is mounted on a substrate (the upper region of the plots) of index 1.45 and thickness 2 mm. The field is focused to the z ) 0 plane
in free space. Focusing through the substrate has the effect of moving this focus by about 640 μm, as shown, and also introducing aberration
(cf., Figure S1 in the Supporting Information, which considers the same scenario but with the sample suspended in free space). Three sample
thicknesses are considered, 2 μm in the left column, 7 μm in the center column, and 15 μm in the right column, that span the usual range in
transmission measurements. The y-polarized field (the only nonzero field direction) in the sample is shown in parts a-i. The substrate boundary
is marked with a dashed line and the slab boundaries with solid lines. Wavelengths of (a-c) 3 μm (νj ) 3333 cm-1), (d-f) 6 μm (νj ) 1667 cm-1),
and (g-i) 14 μm (νj ) 714 cm-1) are shown. The magnitude of the angular spectrum after the sample, By

(3)(sx, sy, νj) is shown in parts j-l.
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The illuminating light is focused onto the edge of the sample
in Figure 4. In this case, as expected, significant changes to the
focused field can be observed. Some of the light is refracted into
the absorbing slab and bent out of the collection cone (this can
be seen in parts j-l particularly clearly). The resulting sample-
induced effects can be seen to trend progressively more prominent
with increasing sample thickness. The net effect of an edge is to
redistribute spatially the total intensity that would otherwise be
incident on the detector. If the distribution is outside of the
collection cone, the total intensity reaching the detector is
decreased and consequently the apparent absorption is increased.
This apparent increase in absorption is only due to optical effects
however and depends on the sample morphology. For nonab-
sorbing spectral regions, the resulting imaging contrast is strong
at the edges of domains and is akin to that observed in optical

microscopy. The contrast between domains is dictated by their
respective refractive indices. While the obvious implication is that
an IR microspectrometer may be used in the manner of an optical
microscope with properties in the mid-IR region, such a use is
not very practical. The primary motivation for working in the mid-
IR region is to obtain chemical contrast using absorbance of
specific chemical species in spatial domains. Hence, the more
important implication is that scattering from nonabsorbing regions
of one domain can influence the data recorded in an absorbing
spectral region for another domain. In this manner, optical effects
complicate data interpretation and make measurements of the
spectrum dependent on sample structure.

Animations showing the interactions of the line-focus with the
sample are included in the Supporting Information. There is an
animation for each combination of wavenumber and sample

Figure 3. Responses for a line-focused y-polarized field incident between two absorbing slabs (x ) 100 μm) separated by a distance several-
fold the wavelength. All other plots and parameters are the same as in Figure 2. A similar scenario, but with the sample suspended in free
space, is illustrated in Figure S2 of the Supporting Information.
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thickness seen in Figure 2, and a second animation for each
combination but with the sample suspended in free space rather
than on a substrate.

When the diffracted components are collected, the distribution
of light intensity in the detector plane is also affected, meaning
that contributions from the edge effects can produce artifacts in
pixels besides the ones associated with the edge position. To
understand the practical effects of spatial redistribution, a fully
two-dimensional focusing solution is needed. Hence, a full focusing
aperture, rather than a line-focus, is considered for the remainder
of this article. In all cases, circular apertures (as shown in the
previous article24) are represented on a discrete Cartesian grid,
as consistent with the analysis presented in the previous section.
The effects of light redistribution are illustrated in Figure 5.

The object from Figure 2 is considered in Figure 5 but
represented with NU ) 40 coefficients. The angular spectrum
of illumination is discretized so that for any wavenumber νj the
sx diameter across the aperture is at least 20 pixels and the sy

diameter is 20 pixels. The field emerging from the sample is
represented using an angular spectrum discretized with the
same pixel spacing and with 20 pixels in the sy dimension and
at least 60 pixels in the sx dimension. The discretization
described here is more coarse than that used in the previous
calculations of the fields in the sample. This is because the
predicted detection data are less sensitive to fine features of
the field (e.g., evanescent waves) so that the desired prediction
ceases to change with the discretization at a more coarse level.
The outer and inner Cassegrain numerical apertures are again

Figure 4. Responses for a line-focused y-polarized field incident on the edge (x ) 50 μm) of an absorbing slab. All other plots and parameters
are the same as in Figure 2. A similar scenario, but with the sample suspended in free space, is illustrated in Figure S3 of the Supporting
Information.
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0.5 and 0.1, respectively, which means that the discrete
representation of the scattered fields extends well into the
evanescent region.

Two modalities were simulated. First, the focus of an unpo-
larized illuminating field was translated in small increments and
the emerging angular spectrum calculated. By calculation of the
total power throughput,28 a point mapping system was simulated,
where a large area detector was used and the Cassegrain edges
set the limiting apertures in the optical path. That is, the sample
was illuminated at a single spot and the transmitted light captured
using a single IR detector. Second, widefield illumination with
array detection was simulated. The transmitted angular spectrum
can be used to calculate the intensity on a detector plane,29 and
for each focal position these intensities can be summed. The fill
factor of the detector is not explicitly considered here but the
consequences of a nonunity fill factor can be included in the model
and are not expected to produce significant qualtitative changes.
These two approaches, point mapping and imaging, are both
employed in contemporary microspectroscopy, and simulations
in Figure 5 for both modalities demonstrate similar results.
However, it is instructive to notice how the measured profile of
the slab depends on wavenumber. For example, both the gradient
of the absorbance at the slab edge and the overshoot at the edge
vary with wavenumber. While the wavenumber dependence of
the achievable spatial resolution is known,30 spectral measure-
ments also change with wavelength due to optical effects (such
as diffraction and refraction) and, additionally, with sample
structure (e.g., thickness). A description of spectral distortions
and their effect on spatial specificity (and, in turn, the resolution
attainable) is lacking. The model sample of constant k(νj) consid-
ered here exhibits differing profiles due to wavelength dependent
phenomena, emphasizing this relationship between recorded
spectra and the apparent morphology of the sample.

Frequency-Variant Samples. To see how optical phenomena
influence a measured spectrum, the simulation parameters de-

scribed for Figure 5 were modified by replacing the constant index
of the slab with the complex refractive index of toluene31 and by
replacing the constant index of the substrate by the index of
barium fluoride.32 A background measurement was calculated by
applying standard transmission coefficients to model the transmis-
sion of light through the air-to-barium-fluoride boundary at the
first substrate surface and the barium-fluoride-to-air boundary at
the second substrate surface. In the presence of the absorbing
toluene slab, both point mapping and imaging profiles were
calculated using the methods described above.

Spectra from the imaging modality are shown in Figure 6. In
these calculations it was assumed that the pixel size was 5 μm at
the sample plane. Spectra are plotted for the center of the slab
and for measurements in the vicinity of the edge. It can be seen
that light scattered outside of the collection cone produces a
nonzero baseline in the measured spectra, as is commonly
observed. A smooth baseline function is often fitted to these
spectra and subtracted out before spectral metrics are calculated.
Here, local linear baselines are fitted to the spectra, as is common
practice in spectral preprocessing, and peak position and height
metrics calculated (as illustrated in Figure 6). The resulting peak
positions are given in Table 1, and the resulting normalized peak
heights are given in Table 2. In both cases an ideal value has
been calculated by determining the true absorbance profile from
the imaginary refractive index.33

It can be seen that the observed spectral metrics depend on
the position at which the spectra are measured. Optical effects
distort the spectra by coupling the real part of the refractive index
and the sample structure into the data. While baselining has
removed some of the gross optical effects, the metrics are not
independent of morphology. It should be noted that correction
algorithms other than baseline subtraction have been proposed,
e.g.,takingderivativesofthespectraormoreadvancedprocedures.34,35

However, these procedures are typically ad hoc or do not fully
account for physical phenomena such as the coupling of the
dispersive line-shape (the real index) into the observed spectra
and the influence of the sample morphology on the collected data.
Hence they cannot capture the physics of the true distortions and
may provide unjustified confidence compared to uncorrected data.

The point mapping modality was also simulated, and the
measured spectra are shown in Figure 7. While there are
differences, the gross behavior can be seen to be similar to that
observed in the imaging modality. In this example, the observed
peak positions (Table 3) are the same as for the mapping case,
while the peak ratio (Table 4) metrics differ but exhibit a similar
amount of variability as the imaging case. The baseline charac-
teristics differ between the imaging and mapping modalities. This
is to be expected as scattering distorts the point spread function
of the light to spatially redistribute light intensity incident on the
detector—in imaging mode this means that light scattered from
an edge can effect neighboring pixels, while for mapping this type
of crosstalk does not occur.

(28) Equation 32 in ref 5.
(29) Equations 30 and 31 in ref 5.
(30) Lasch, P.; Naumann, D. Biochim. Biophys. Acta 2006, 1758, 814–829.

(31) Figure 6 in ref 5.
(32) Malitson, I. H. J. Opt. Soc. Am. 1964, 54, 628–632.
(33) Equation 35 in ref 5.
(34) Kohler, A.; Kirschner, C.; Oust, A.; Martens, H. Appl. Spectrosc. 2005, 59,

707–716.
(35) Thennadil, S. N.; Martens, H.; Kohler, A. Appl. Spectrosc. 2005, 60, 315–

321.

Figure 5. Absorbance profiles of the 7 μm slab of Figure 2, at
different wavenumbers and for both (a) imaging and (b) point mapping
modalities.
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Note that the severity of the metric distortion depends on the
sample morphology and boundaries. For example, Figures S4 and
S5 in the Supporting Information show results for a sample
thickness of 2 μm rather than 7 μm. It can be seen that optical
distortions, such as the nonzero baseline, are less severe for the
2 μm thick sample. As noted earlier, thinner samples can, in
general, be expected to be less susceptible to distortions due to
optical phenomena than comparable thicker samples. Spectral

metrics are also affected to a lesser extent as can be seen by
comparing the metric tables for the 2 μm thick sample (Tables
S2-S5 in the Supporting Information) to the metric tables for the
7 μm thick samples above. For example, in the latter, a maximum
peak shift of 2.5 cm-1 is observed, while for a 2 μm thick sample,
the maximum peak shift is 1 cm-1.

The dependence of spectral distortions on sample parameters
is important from two perspectives. First, the effect of geometry
becomes difficult to quantify in simple terms. Hence, a measure
of the systematic deviations in the spectrum must be individually
calculated for specific samples. This is especially important for
studies that are interested in subtle chemical changes at edges
(often several wavenumber shifts) or in an algorithm-based search.
While careful simulations are prescribed for sensitive chemical
analyses, the strategy in database searching may be to use a
coarse spectral resolution. Second, in automated analysis algo-
rithms such as those for tissue histopathology,36 sample thickness
becomes an important parameter whose impact must be appreci-
ated. One approach may be to carefully control sample thickness
such that deviations are consistent and can be eliminated from
use in classification algorithms by choice of appropriate metrics.
A second approach is to use a large number of samples with a
thickness variation arising from the natural variation of the

(36) Fernandez, D. C.; Bhargava, R.; Hewitt, S. M.; Levin, I. W. Nat. Biotechnol.
2005, 23, 469–474.

Figure 6. Imaging spectra from a 7 μm thick toluene slab on 2 mm of barium fluoride. The absorbance is normalized by the slab thickness.
Spectra are shown from the center of the slab (x0 ) 0) and in the vicinity of the edge (x ) 50 μm). The full spectra (a), and details for x ) 0
(b-d), x ) 45 μm (e-g), x ) 50 μm (h-j), and x ) 55 μm (k-m) are shown. A baseline is illustrated by a dashed line in the detail plots, and
peak heights and positions are calculated as illustrated by the solid vertical lines. The calculated metrics are given in Tables 1 and 2.

Table 1. Peak Positions for the Imaging Data to the
Nearest 0.5 cm-1

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6

ideal 3027.0 2920.0 1495.5 1460.5 1030.0 1081.5
x0 ) 0 3027.0 2920.0 1495.5 1460.0 1030.0 1081.5
x0 ) 45 μm 3027.0 2919.5 1495.5 1460.0 1030.0 1081.0
x0 ) 50 μm 3026.5 2919.0 1495.5 1459.0 1030.0 1081.0
x0 ) 55 μm 3027.0 2919.0 1495.0 1458.0 1029.5 1080.5

Table 2. Normalized Peak Heights for the Imaging Data

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6

ideal 1.00 0.514 1.79 0.436 0.444 0.350
x0 ) 0 1.00 0.505 1.76 0.388 0.416 0.327
x0 ) 45 μm 1.00 0.505 1.74 0.400 0.401 0.314
x0 ) 50 μm 1.00 0.517 1.57 0.401 0.388 0.296
x0 ) 55 μm 1.00 0.517 1.58 0.447 0.486 0.352
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protocol. Any developed classification algorithm then will be
insensitive to optics-induced distortions within the range of
thicknesses used in the development of the protocol.

Experimental Comparison. To test the predictive power of
the model presented here, it is useful to compare experimental
data with simulations for a comparable sample and imaging
system. The sample data were recorded on a Varian Stingray

system using a mid-IR interferometer. The microscope of the
instrument is equipped with a narrowband, liquid nitrogen cooled
mercury-cadmium-telluride (MCT) detector, as well as a 128 ×
128 pixel, liquid nitrogen-cooled focal plane array MCT detector.
Data are recorded at an undersampling ratio of 2 referenced to
the He-Ne laser, zero-filled by a factor of 2, and Fourier
transformed using Happ-Genzel apodization. The nominal spec-
tral resolution was 2 cm-1. The ratios of two similarly collected
image sets (one without a sample to serve as a background
and one with a sample) are taken pixel by pixel to obtain
absorbance image datasets. A common photoresist material,
SU-8 2000.5 (MicroChem Corp., Newton, MA), was spin coated
to an approximate thickness of 10 μm on a 25 mm diameter
barium fluoride (BaF2) disk and pattern cured by UV exposure
using a standard USAF 1951 target (Edmond Optics, Bar-
rington, NJ). The entire sample was baked at 95 °C and
developed as per standard protocols for postcuring. A postbake
at 150 °C for 5 min was performed to ensure complete
polymerization and long-term stability.

An image of the transmittance, at νj ) 2903 cm-1, for a region
of the target is shown in Figure 8. The data measured along the
dashed line will be examined; in particular, the spatial-spectral
response across the edge of a bar structure is of interest. The
absorbance profile along the dotted line shown in Figure 8 is

Figure 7. Point mapping spectra from a 7 μm thick toluene slab on 2 mm of barium fluoride. The absorbance is normalized by the slab
thickness. Spectra are shown from the center of the slab (x ) 0) and in the vicinity of the edge (x ) 50 μm). The full spectra (a) and details for
x ) 0 (b-d), x ) 45 μm (e-g), x ) 50 μm (h-j), and x ) 55 μm (k-m) are shown. A baseline is illustrated by dashed lines, and peak heights
and positions are calculated as illustrated by the solid vertical lines. The calculated metrics are given in Tables 3 and 4.

Table 3. Peak Positions for the Point Mapping Data to
the Nearest 0.5 cm-1

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6

ideal 3027.0 2920.0 1495.5 1460.5 1030.0 1081.5
x0 ) 0 3027.0 2920.0 1495.5 1460.0 1030.0 1081.5
x0 ) 45 μm 3027.0 2919.5 1495.5 1460.0 1030.0 1081.0
x0 ) 50 μm 3026.5 2919.0 1495.5 1459.0 1030.0 1081.0
x0 ) 55 μm 3027.0 2919.0 1495.0 1458.0 1029.5 1080.5

Table 4. Normalized Peak Heights for the Point
Mapping Data

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6

ideal 1.00 0.514 1.79 0.436 0.444 0.350
x0 ) 0 1.00 0.502 1.75 0.386 0.415 0.326
x0 ) 45 μm 1.00 0.504 1.73 0.403 0.397 0.309
x0 ) 50 μm 1.00 0.520 1.56 0.395 0.382 0.292
x0 ) 55 μm 1.00 0.509 1.55 0.435 0.475 0.342
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plotted for three different wavenumbers in Figure 9a. Apparent
artifacts, e.g., overshoot in the absorbance at the sample edges,
can be seen to vary with wavenumber. These distortions arise
from both baseline offset due to redistribution of intensity by the
sample and changes in the apparent peak shape. Other wave-
number-dependent effects are also visible, e.g., the change in
spatial resolution as a function of wavenumber is manifest in the
differing gradients of the absorbance profiles at the edge.

Subtracting a slowly varying baseline is a common method to
compensate for the consequences of optical effects on spectra. In
Figure 9b, the edge profiles are replotted after a linear baseline
has been subtracted from the spectra. For each of the spectra,
the baseline was found by linear interpolation between minima
of the SU-8 response, specifically between the absorbance values
at 910, 1423, 1551, 1827, 2696, 2783, 3111, 3736, and 3931 cm-1.
It can be seen that the baselining procedure qualitatively
improves the edge profiles, at least in absorbing regions of the

spectrum. Such subjective baselining can lead to seemingly
reasonable results, especially when scattering is high and
absorbance is low. For automated analyses, which are required
due to the large number of pixels (spectra) making manual
correction impossible, simple corrections may lead to errors.
For example, at 2100 cm-1, the baselining procedure has
resulted in some nonphysical negative values of absorbance.
Another potential concern is the discrepancy in absorbance
between the two bar targets. For the bar centered around y )
20 μm, the absorbance values at 1283 and 2903 cm-1 are
approximately equal, while the neighboring bar exhibits a
greater difference, despite being made of the same material
and being subject to the same processing history.

Quantitative examination of the collected data reveals spectral
distortions of the type predicted earlier in the article. An illustrative
absorption peak is centered around νj ) 1508 cm-1. Experimental
measurements of this peak are shown for various sample
locations in the left column of Figure 10. Data collection from
this peak can be simulated by first estimating the physical
properties of the sample. By comparison of the absorbance

Figure 8. Transmission image of a SU-8 bar target on barium
fluoride at 2903 cm-1. In subsequent figures, profiles will be displayed
from along the dashed line, and spectra will be plotted for the points
marked with a circle.

Figure 9. Absorbance profiles, before (a) and after (b) baseline
correction, across the bar target for three different wavenumbers. At
νj ) 1283 cm-1 and νj ) 2903 cm-1, the SU-8 polymer is absorbing.
At νj ) 2100 cm-1, the polymer is nonabsorbing but scattering effects
produce apparent absorption at the edges.

Figure 10. Experimental absorbance spectra taken at y ) 22 μm
(a), y ) 60.5 μm (c), and y ) 71.5 μm (e) (i.e., the points marked
with a circle in Figure 8) and simulated spectra taken from the polymer
50 (b) and 6 μm (d) from the edge and from off the polymer 5 μm
from the edge (f). The peak location, after the illustrated baseline
correction, is displayed on the plots.
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measured at y ) 22 μm in relation to the imaginary part of the
refractive index of SU-8 calculated in the previous article, the
thickness of the SU-8 was estimated to be approximately 7 μm.
The imaginary part of the refractive index was then estimated
from the absorbance33 (again from the measurement at y ) 22
μm). Kramers-Kronig37 analysis was used to calculate the real
part of the refractive index, thus completing the description of
the object. Note that the SU-8 refractive index calculated in the
previous article was not employed, as differences in sample
preparation were found to have introduced small but significant
differences in the optical properties of the polymer.

The sample edge profile and the instrument were modeled in
the same manner used to generate Figure 6, except that the inner
and outer numerical apertures of the Cassegrain were taken to
be 0.26 and 0.4, respectively. These values are consistent with
those used for the same instrument in the previous article. The
experimental and predicted spectral profiles of parts a and b of
Figure 10 agree well. This is to be expected as the SU-8 refractive
index used in the simulations was calculated from Figure 10a,
and this region of the sample is a relatively simple layered
structure.

In the vicinity of the polymer edge, the peak position in the
experimental data can be seen to shift. Since the target structure
is made of a single material, this shift can most likely be attributed
to optical effects. Nonuniform curing occurring at the sample
edges can be ruled out due to extensive postreaction thermal cure.
The simulations also predict a peak shift toward lower wavenum-
ber; however, this shift is greater in the predictions than it is in
the measurements. There are several possible causes for this
overestimation. The characterization of the sample relied on a
chain of estimation procedures, the real index was estimated from
the imaginary index which was in turn dependent on the assumed
sample thickness, with the possibility of propagating errors. The
correct prediction of bulk spectra, however, suggests that this
error is small. The sample geometry may also lead to errors in
prediction. In simulation, the edge is represented by a steep
gradient between two perfectly flat surfaces. In reality, the sample
edges can be expected to have some finite and unknown slope,
and the horizontal surfaces in the bar targets may not be perfectly
flat. The broad agreement between the experimental and simu-

lated results of Figure 10 indicate that the model developed has
significant predictive power and allows an understanding of the
causes and effects of optical artifacts.

CONCLUDING REMARKS
This article presents the first attempt at applying rigorous

optical theory to heterogeneous samples in IR microspectroscopy.
It is shown that lateral structure in thin samples leads to significant
effects on the recorded spectral data arising from a coupling
between wavelength, sample geometry, optical properties within
the sample, presence of interfaces, and the optical setup. With
the use of progressively sophisticated simulations, the effect of
each of these factors was demonstrated in a quantitative manner.
It was shown that the redistribution at the detector place of the
intensity incident upon the sample can be quantitatively modeled
and verified with experiments. The implications for the practice
of spectroscopy are that the spatial and spectral variation of the
real and imaginary parts of the index of the sample cannot be
decoupled from FT-IR imaging data, as is currently practiced. It
is emphasized that recording the true data will require the
development of both new instruments that can provide additional
data to extract true spectral properties from the data, as well as
numerical methods to assist in the same. The theoretical frame-
work presented here should serve as a useful guide to estimate
the true structure and quantify distortions in present instruments
as well as a platform for future development.
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Fourier Transform Infrared (FT-IR) spectroscopic imaging is emerging as an automated alternative

to human examination in studying development and disease in tissue. The technology’s speed and

accuracy, however, are limited by the trade-off with signal-to-noise ratio (SNR). Signal processing

approaches to reduce noise have been suggested but often involve manual decisions, compromising the

automation benefits of using spectroscopic imaging for tissue analysis. In this manuscript, we describe

an approach that utilizes the spatial information in the data set to select parameters for noise reduction

without human input. Specifically, we expand on the Minimum Noise Fraction (MNF) approach in

which data are forward transformed, eigenimages that correspond mostly to signal selected and used in

inverse transformation. Our unsupervised eigenimage selection method consists of matching spatial

features in eigenimages with a low-noise gold standard derived from the data. An order of magnitude

reduction in noise is demonstrated using this approach. We apply the approach to automating breast

tissue histology, in which accuracy in classification of tissue into different cell types is shown to strongly

depend on the SNR of data. A high classification accuracy was recovered with acquired data that was

�10-fold lower SNR. The results imply that a reduction of almost two orders of magnitude in

acquisition time is routinely possible for automated tissue classifications by using post-acquisition noise

reduction.

1. Introduction

Fourier Transform Infrared (FT-IR) spectroscopic imaging1

with array detectors provides large data sets but often requires

large times for acquisition of high signal to noise ratio (SNR)

data. Following conventional trading rules in IR spectroscopy,2

hence, the signal is recorded multiple times and added to increase

the signal to noise ratio (SNR) of the data. In imaging, other

approaches have also been suggested due to the complex nature

of the acquisition process.3,4,5,6 Fundamentally, these methods

unavoidably traded the SNR reduction against an increase in

acquisition time. Another approach may be to improve hardware

but is expensive and impractical for most users. A final and very

successful approach has been to trade off the spatial coverage per

scan using sensitive linear array detectors, obviously limiting the

spatial coverage rate. For a finite data acquisition time, other

schemes to extract low noise information are available7 but these

methods neglect the image as a whole and result in loss of image

fidelity. As a consequence, FT-IR imaging data acquisition is

limited in applications that require fast imaging at high fidelity.

Using computation to enhance instrument performance is

becoming an attractive option with the rapid development of

powerful computers and increased storage capacities. A proce-

dure based on the Minimum Noise Fraction (MNF) transform,8

for example, was adopted from the satellite, airborne and other

imaging communities9 for IR spectroscopic imaging.10,11

Similarly, ideas in data compression and with the potential for

attendant noise reduction are being proposed by other

groups.12,13 In this milieu, a general approach to noise reduction

is to use an Eigenvalue decomposition of the data using

a forward transform, for example, a principal components

analysis (PCA). After selecting eigenimages with sufficient SNR,

the selected data are inverse transformed to yield the entire

dataset with lower noise content. This approach was used in

FT-IR imaging, for example,14 to examine phase compositions

by enhancing contrast between different regions. PCA reorders

data in decreasing order of variance. Similarly, techniques can be

used to order eigenimages in decreasing order of SNR, which is

the aforementionedMNF transform. Amodified version15 of this

transform was shown to improve image fidelity and achieve

better noise reduction than PCA, for example.

Mathematical transform techniques for noise reduction

generally utilize the property that noise is uncorrelated whereas

spectra (signals) have a higher degree of correlation. In the

transform domain, hence, the signal becomes largely confined to

a few eigenvalues whereas the noise is spread across all. Noise

reduction can be achieved by retaining eigenvalue images that

corresponding to high signal content and computing the inverse

transform. It is the relative proportion of the signal and noise

which forms a criterion for inclusion of specific eigenimages in

the inverse transform. Inclusion of too many will not allow for

significant noise rejection, while inclusion of too few would result

in loss of fine spectral features. Hence, identifying eigenvalues

corresponding to high signal content is an important step in the

noise reduction process.16,17 Most methods16,18,19 choose the first

m eigenimages. The value of mmay be chosen by considering the

decay of the information content (eigenvalues). The assumption
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that the first m eigenimages should be chosen, however, is

questionable. The MNF approach, for example, was specifically

developed to overcome the observation that the first m eige-

nimages in PCA were not always optimal and proposed, instead,

a noise-based ordering. Other methods17,20 can be computa-

tionally expensive or do not utilize some of the features of the

data. All methods, hence, place the ordering burden on the

decomposition algorithm and do not directly utilize features of

the data or the unique features of the image acquisition process.

The method proposes here addresses this gap in utilizing data

effectively by using the structure within the data to select

features.

Another general criticism of present methods is that they do

not explicitly account for the correlated spatial and spectral

information in the data. The variance in data may arise from

measurement noise, sensor characteristics or due to scattering

effects from the sample. For example, the MNF approach can be

shown to rigorously order images in decreasing order of random

noise. Implicitly, the signal in the re-ordering of MNF eigenim-

ages is assumed to arise from features in the image but could

come from those other than the sample of interest. We present

such a case in Fig. 1, which shows the 4th, 8th, 12th and 19th

eigenimages for FT-IR imaging data from a breast tissue sample

acquired following procedures previously reported.21 The 4th

eigenimage shows interesting tissue morphological i.e. structural

features. Although the 8th eigenimage has higher SNR compared

to the 12th or 19th, the 12th and 19th eigenimages seemingly

contain more features of interest. Obviously, here one would

include the 12th and 19th but not the 8th image in a noise

reduction scheme. The 8th eigenimage likely arises from water

vapor differences, as can be seen by examining the spectra

acquired in this data set using a small linear array that is raster

scanned horizontally from bottom to top, and not from the

sample itself. Hence, for spectroscopic imaging data sets, it may

be more instructive to employ a method of selecting eigenimages

that accounts for both spectral and spatial correlations.

There is no universal algorithm to optimally include both

spatial structure pertinent to the sample and spectral character-

istics in selecting appropriate eigenimages. Hence, the identifi-

cation of eigenimages to include in the data inversion process is

invariably a manual task. This requirement makes the automa-

tion advantage limited and is a key impediment to automated

and routine application of noise rejection methods. First, though

the effect is likely to be small, manually selected eigenimages will

likely vary from practitioner to practitioner and may lead to

variance in scientific conclusions or confidence in results. Second,

the need to examine every eigenvalue image (or, at least, a large

set of images) is time-consuming. The decision to exclude or

include images with questionable content requires significant

time and some other guidance, e.g. a complementary optical

microscopy image. While such data are often available, they are

presently not used in noise rejection. In this manuscript, we

propose a method to automatically determine eigenimages to use

in an inverse transform for effective noise rejection by enabling

the use of additional information to recognize important features

in the data. The proposed algorithm selects eigenimages based on

structural features in a quantitative manner by utilizing both the

correlation between spectra as well as the spatial information in

the image. We test the automated noise rejection algorithm by

comparing information about tissue structure extracted from

data before and after noise rejection. Last, the improvements in

SNR are quantified and discussed in terms of potential data

acquisition strategies.

2. Methods

2.1. Mathematical background to the proposed method

The MNF transform was introduced by Green et al.8 to order

multispectral data in terms of image quality and we briefly

describe the background to our approach next. Consider a three-

dimensional (3-D) dataset Xk(~t ) where~t ¼ (i,j) represents spatial

data coordinates and k denotes the spectral element index.

If the number of spectral elements in the data are M, then

X(~t ) ¼ [X1(~t ),X2(~t ),X3(~t ).XM(~t )]T and the true spectral value,

S and additive noise, N, are related as

X(~t ) ¼ S(~t ) + N(~t ) (1)

Consequently, the covariances are related through

Cov(X) ¼ Cov(S) + Cov(N). (2)

Next, the noise fraction for the kth spectral element is defined in

terms of the variance of the noise

Fk ¼ Var(Nk)/Var(Xk) (3)

which is the ratio of noise variance to the total variance of that

spectral element. The MNF transform is a linear combination of

bands

Yk ~t
� � ¼

XM
m¼1

ak
mXm ~t

� �
(4)

Fig. 1 (A) 4th MNF Factor (Tissue features are apparent) (B) 8th MNF

factor (C) 12thMNF factor (D) 19thMNF factor. The 8th factor has less

apparent structural features than others and is dominated by measure-

ment artifacts.
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such that the noise fraction Fk is minimum for Yk(~t ) among all

linear transformations orthogonal to Yj(~t ), j ¼ 1, 2, .k.

The vectors ak ¼ [ak
1,a

k
2,a

k
3.ak

M]
Tare the left hand eigenvectors of

SN S�1
X. Also the eigenvalue corresponding to ak is equal to the

noise fraction of Yk, i.e.

lk ¼Fk (5)

The definition of MNF would imply that l1 # l2 #. # lM.

Since lk corresponds to the noise fraction, MNF re-orders

spectral elements in terms of increasing Fk or equivalently, in

terms of decreasing SNR. The same set of eigenvectors is

obtained from maximizing SNR or the noise fraction. However,

the approach that maximizes SNR would result in higher

eigenvalues corresponding to higher SNR and the MNF trans-

form would result in decreasing order of SNR corresponds to

decreasing order of eigenvalues l1 $ l2 $. $ lM. Our imple-

mentation uses this approach to compute MNF transforms. It is

useful to note that since theMNF transform depends on signal to

noise ratio it is invariant under scale changes to any band (unlike

principal components).

2.2. Proposed algorithm based on MNF-transform for noise

reduction

The MNF transform is first computed following the method

above. In heterogeneous materials and tissue, we note that the

eigenimages also have structure corresponding to the true

structure of the material. The contrast and precise values of any

spectral and eigenimage, of course, cannot be equated but both

types of images have distinct spatial domains. Domains are

defined by their edges and this property forms the basis of our

eigenimage selection scheme. Our proposed method relies on

leveraging the spatial structure in spectroscopic imaging data

with structural details in eigenimages via comparisons of domain

edge profiles. Domains in breast tissue, for example, include

boundaries of the sample, ducts and transitions between different

structural units. Several methods for edge detection22 based on

different filters and different thresholding schemes have been

proposed and studied. Canny’s method,23 in particular, is widely

used and was found to be effective for our application. We

evaluated two other edge detection methods (Sobel, Roberts) but

found the Canny method better suited to the relative domain and

pixel sizes likely because Canny’s method has been shown to be

optimal with respect to detection, localization and response.23

The result of edge detection is a binary image that is termed an

‘edge map’. A typical absorbance image and edge map is shown

in Fig. 2. While it is indeed possible to determine edges for any

image in general, confounding effects may arise when the domain

sizes are similar to pixels sizes and the images are noisy. Hence,

an intermediate step may be to use a median filter. The choice of

size of the median filter will be a compromise between the size of

structural features and pixel sizes. Using a large median filter

would be effective in removing pixel-to-pixel variations but could

also result in loss of features, especially those that are smaller

than the size of the median filter. Median filters of sizes between

7� 7 and 13� 13 were found to be most effective for the samples

considered here in that the results were very consistent regardless

of the choice of filter. Hence, we elected to routinely use a 9 � 9

pixel filter which is used on the data in Fig. 2 prior to obtaining

the edge map.

Once edge maps for the eigenimages are obtained, we seek to

compare them to an ‘ideal’ image (I). It is desirable that this

image contains all structural details of interest as well as be of

high SNR. The edge map of I and edge maps of eigenimages can

then be compared and eigenimages that are sufficiently repre-

sentative of the sample structure may be included in the inver-

sion. The proposed method does not depend on any specific

method to generate edge maps and diverse contrast mechanisms

can be used to construct the edge map of the ideal image. Several

possibilities are discussed next. The first MNF eigenimage

corresponds to the highest SNR and likely contains the greatest

sample detail; hence, it could be used as an ideal image. Another

avenue may be to choose an image based on the molecular

characteristics of the sample if prior knowledge about the sample

is available. For example, spectral characteristics of tissues for

a given organ is often well-constrained in the spectral regions

between � 950 cm�1 (lower detector cut-off in some of the

experiments here) to �1800 cm�1 (mainly bending and rocking

vibrational modes of molecules) and from �2765 cm�1 to

�3750 cm�1 (stretching modes). An integrated absorbance in

those regions may be used but can be susceptible to edge

distortions due to molecularly non-specific scattering.24 While

multiplicative scatter correction25 and rigorous optical theory26,27

approaches are emerging, an approximation to removing scat-

tering distortion is the use of second derivatives of spectra.28 The

sum of the absolute values of the second derivative data is then

indicative of the overall chemical composition of the tissue. The

Savitzky-Golay filter used for computing derivatives also reduces

noise while preserving peak heights and widths, providing a high

SNR I (Fig. 2) that captures features from important spectral

bands. Yet another alternative is to calculate the Gram-Schmidt

intensity of the interferogram of the sample,29 which could be

a faster route by precluding the FT-process. The image, however,

would retain both structural and biochemical contributions from

all functional groups and scattering interfaces. Finally, another

approach could be to use the bright field optical microscopy

image. The optical image, however, may not contain sufficient

contrast, have differences observed in the IR image or may

experience a mismatch in resolution. The IR ‘‘bright field’’

equivalent, which is simply the height of the centerburst may be

used. Since a background is collected for absorbance data, the

sample data set can be easily corrected for illumination

Fig. 2 A typical image (left) obtained by plotting the absorbance of the

sample (here at 3400 cm�1) and the corresponding edge map (right)

obtained after median filtering and using Canny’s method.
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differences. This approach can be considered a combination of

both IR spectral (absorbance) and visible optical (scattering)

imaging.

Having chosen an ‘ideal’ image I, its edge map EI is computed.

Next, each eigenimage is filtered using the same kernel as that

used for the ideal image edge map and edge maps Ej, j ¼ 1,.,M

can be found. In practice, the number of significant eigenimages

are much smaller than the number of spectral data points. Hence,

it is prudent to consider a smaller subset of eigenimages to save

computation time. In carefully examining resulting images from

the MNF transform, we noticed that most information content

was in the first 30 eigenimages. Hence, we chose to examine

a smaller subset of MNF transformed eigenimages (P¼ 64) from

the available spectral data points (1640). This represents

a substantial reduction in the time for comparison and data

storage needed. Next, the root mean square error (RMSE)

between EI and Ej, j¼ 1, 2, 3.,P is computed as a measure of the

spectral similarity of the images using

RMSEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xbx
p¼1

Xby
q¼1

�
EI ðp; qÞ � Ejðp; qÞ

�2
vuut j ¼ 1; 2; 3;. P (6)

Where, bx and by are the pixels along the row and columns of the

image array. A typical plot of RMSE as a function of eigenimage

number is shown in Fig. 3. The RMSE prior to sorting is the

decreasing order of importance from the MNF transform and

shows that factors corresponding to higher eigenvalues (lower

eigneimage number) may not necessarily have significant

features. While the eigenvalue curve is obviously monotonically

decreasing, the RMSE curve of the MNF eigenimages displays

significant fluctuation. Re-ordering by RMSE values not only re-

orders the important eigenimages by assigning them a lower

number but makes the curve smooth and amenable to accurately

determining saturation or calculating derivatives. It is notable,

though, that the actual RMSE error is not affected by re-

ordering and the information content of all the transformed data

is only re-prioritized and not altered in any manner. It is

instructive to compare the RMSE ordered and MNF ordered

eigenimages (Fig. 3). While it appears that �60 eigenimages

would be important from the MNF-ordered plot, the RMSE-

ordered curve indicates that�30 images may be useful in the

inverse transform. This discordance is due to the sensitivity to

any structure in the image in MNF-ordered data, while the

RMSE-ordered data are only sensitive to the structure in the

reference image. Hence, prioritizing eigenimages by RMSE is

likely beneficial. It should be noted that the eigenimage number

for the unsorted RMSE andMNF-order is the same. While there

is a generally increasing trend (decreasing importance) for both

values, the RMSE plot appears to be noisy. Since the RMSE is

directly a measure of concordance, hence, we sorted eigenimage

numbers based on increasing RMSE and assigned them new

eigenimage numbers based on RMSE values.

The importance of the alteration by sorting can be understood

by examining the RMSE plot (Fig. 3) in conjunction with the

spatial features in eigenimages as seen in Fig. 4. Eigenimages and

their corresponding edge maps demonstrate first that images

with significant features (e.g. numbers 1, 3, 10 and 18) have well

defined edge maps while those without significant features

(e.g. number 46) have nondescript edge maps. Second, the spatial

similarity of early factors with the reference edge map results in

lower RMSE values that increase with increasing noise. When

information content of the image is dominated by noise, the

RMSE between any edge map and that of the ideal image is

nearly independent of the actual edges, resulting in the plateau

region of the RMSE curve. Eigenimages close to the chosen cut

off have edge maps with a semblance of features buried in noise.

By choosing all factors corresponding to RMSE values less than

that at the cut-off point, we select only those factors with

significant features. The derivative of the curve in the plateau

region is negligible and could also be utilized in finding the cut-

off point. We choose the cutoff to be the point after which the

derivative does not rise more than m + 3s, where m and

s correspond to the mean and standard deviation of the deriv-

ative of flat region of the curve. This is a very strict condition

which maintains a high degree of spectral detail. Other cutoff

values may be chosen, for example, m + s or simply the first

image whose RMSE exceeds m. Our interest was in preserving as

much spectral detail as possible; hence, we adopt a criterion that

may be more stringent than most and likely represents a lower

level of improvement in SNR than other cutoffs. In summary,

computing the MNF transform, selecting eigenimages based on

sorted RMSE from edge maps and computing the inverse MNF

using the reduced set of eigenimages prior to the cutoff is

a completely automated noise reduction algorithm that does not

require human input. There are choices that can be made while

setting up the protocol, for example, in choice of the reference

image, that are under operator control. Once the protocol is

finalized, however, the process is entirely automated and can be

high throughput. Thus, the criteria of both objectivity and

automation for noise reduction are addressed.

3. Experimental

Tissue used for this study (Biomax Inc.) was processed as per

procedures reported earlier.30 Spectroscopic imaging data are

acquired using the Perkin-Elmer Spotlight 400 imaging spec-

trometer that is equipped with a linear array detector and

samples a 6.25mm � 6.25mm area per pixel. An undersampling

ratio of two with reference to the He-Ne laser and mirror scan-

ning speed of 1 cm/s is used to sample the interferogram to

provide a spectral resolution of 4 cm�1. The interferogram at

every pixel is then Fourier transformed using a zero-filling factor

of two and N-B medium apodization and truncated to

Fig. 3 (Left) Typical error plot before sorting (red) and after sorting

(black) for RMSE, where the increasing eigneimage number indicates

a decreasing order of importance. (Right) Eigenimage order (number) as

ranked by the MNF transform.

This journal is ª The Royal Society of Chemistry 2010 Analyst, 2010, 135, 2818–2825 | 2821

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 - 

U
rb

an
a 

on
 2

4 
N

ov
em

be
r 2

01
0

Pu
bl

is
he

d 
on

 1
8 

O
ct

ob
er

 2
01

0 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

0A
N

00
35

0F
View Online



4000�720 cm�1 for efficient storage. A background single beam

reference is collected by averaging 120 scans and sample spectra

are acquired by averaging two interferometer scans. To validate

the method for different instruments, we implemented the same

algorithm on data acquired from a system equipped with a large

two-dimensional array detector (Varian Stingray). The system

consists of a Varian 7000 Spectrometer coupled to a microscope

accessory, UMA-400. The imaging detector is a liquid nitrogen-

cooled mercury cadmium telluride (MCT) focal plane array that

is windowed to 32 � 32 elements (Santa Barbara Focalplane).

The detector samples an area of 175mm � 175mm at the sample.

Interferograms were acquired in rapid scan mode with an

undersampling ratio of 2 at a spectral resolution of 4 cm�1 and

Fourier transformed using a factor of two zero-filling and Nor-

ton-Beer(NB) medium apodization. The data were truncated to

4000 � 950 cm�1 for storage. For these data, the number of

co-additions were varied (1, 2, 4, 8, 16, 32 and 64 scans) to obtain

a range of poor to good SNR data. The background reference

was collected at 120 co-additions.

All software used was written in-house or utilized programs in

ENVI/IDL. Computing MNF transforms involves estimating

noise statistics. ENVI can use a shift difference method to

compute noise statistics, which assumes that every pixel contains

both signal and noise, and that adjacent pixels contain the same

signal but different noise. A shift difference is performed on the

data by differencing adjacent pixel above and to the right of each

pixel and averaging the results to obtain the ‘noise’ value to

assign to the pixel being processed. To the extent that this

assumption is not true, the noise statistics estimate is in error.

Rigorously, the noise should be estimated using repeat

measurements, as that is easily possible in FT-IR imaging. With

the commercial raster scanning system, however, we were unable

to obtain successive measurements without a new scan. The

positioning error on the stage was such that slight pixel shifting

was observed, precluding true averaging at every pixel. Hence,

we employed the shift difference method in this study. The pixel

size being set smaller than the lowest resolution achievable, and

the general nature of large phases in the data here likely result in

the estimate being close.

4. Results and discussion

In order to quantify the SNR gain from noise reduction, we first

acquired high SNR data using the linear array system as a base

for simulations and as a comparator. Poor SNR data is simu-

lated from this data by adding noise from a normal distribution

with different standard deviations (s ¼ 0.001, 0.01, 0.1 and

0.4 a.u.) as shown for a single pixel in Fig. 5(A). Resulting spectra

after noise reduction are shown in Fig. 5(B). An improvement is

apparent, even in cases where noise appears to overwhelm

spectral features. We then acquired data on the large array

system in which single scan acquisition was compared to 64 scan

acquisition (�70 fold slower). As expected, noise-reduced data

were found to be comparable to the high scan numbers. To

Fig. 4 Typical eigenimages (A) ordered by the MNF transform. (B) corresponding edge maps for MNF-ordered images. (C) RMSE re-sorted eige-

nimages within this subset.

2822 | Analyst, 2010, 135, 2818–2825 This journal is ª The Royal Society of Chemistry 2010

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 - 

U
rb

an
a 

on
 2

4 
N

ov
em

be
r 2

01
0

Pu
bl

is
he

d 
on

 1
8 

O
ct

ob
er

 2
01

0 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

0A
N

00
35

0F
View Online



quantify the benefits of post-acquisition processing, the reduc-

tion in noise achieved is quantified in Fig. 6. Noise values were

calculated using the non-absorbing 1950 cm�1 –2000 cm�1 region

with 41 spectral points around 1975 cm�1 and are averages of

1024 spectra.

The dashed diagonal is the unity gain line that separates

decrease or increase in noise upon application of the algorithm.

The plot indicates success in applicability over three orders of

magnitude of input noise where an order of magnitude noise

reduction is observed. The actual noise reduction depends on the

number of factors chosen for the inverse transform, the number

of pixels in the original data set and the degree of correlation in

the noise. If the noise is high enough, the benefit is observed to be

proportional to the input noise. For very low noise cases, the plot

indicates that it becomes difficult to improve the data further.

This behavior likely arises from the distribution of noise and

information in eigenimages. It must be noted that many of the

eigenimages rejected in the inverse transform do contain infor-

mation and all selected do contain noise that is both correlated

and uncorrelated. Hence, the limitation of the process arises from

both correlated noise and the need to balance information

content of eigenimages with the opportunity to reduce noise, We

have used a fairly conservative approach to noise reduction in

that fewer eigenimages could have been selected in the inversion,

which may also explain the lack of significant improvements

when the input noise is low. It is interesting to note that

a previous application of the MNF transform10 also provided

a limit to the improvement possible with this approach, but in the

high noise limit. There, the high input noise data were found to

contain a low frequency response in the spectra of inverse

transformed data that limited the noise reduction achieved. In

summary, the forward-reverse transform approach appears to be

bounded in its ability to improve data quality in both the high

noise (as previously shown) and low noise cases (as observed

here). These limits must be considered when designing data

acquisition protocols that take advantage of this post-processing

approach.

From the trading rules of FT-IR spectroscopy,3,31 a factor of

n improvement in SNR requires an increase of n2 in data

acquisition time. Hence, a method to increase data acquisition

rate without loss in its quality could involve rapid data collection

at a low SNR followed by application of numerical techniques

for noise reduction. The order of magnitude improvement, as we

show above, allows for close to two orders of magnitude

reduction in scanning time. To test this hypothesis, we compared

noise reduced data from a single interferometer scan with data

obtained by averaging 64 scans (Fig. 5(D)). Spectra with only one

scan, after noise reduction, closely resemble spectra obtained

from 64 scans experimentally. Caution must be exercised,

however, in claiming that mathematical techniques provide

precisely equivalent data. As can be seen from the spectra, there

are some low frequency noise components in the noise–reduced

spectrum that were not eliminated.32 Noise reduction has

important implications in areas where data quality cannot be

improved by averaging (e.g. kinetics measurements),33 for low-

throughput configurations such as total internal reflection

sampling,34,35,36 where large quantities of data are acquired or

where the analyte signal is low. An interesting test case in to

perform histopathology without human intervention37 faster

than with current data acquisition protocols. Briefly, FT-IR

microspectroscopy combined with pattern recognition tools38 is

rapidly developing as a potential tool for automated structure39

and disease recognition40,41,42 within complex tissue by a number

of groups.43,44 Unfortunately, the time to acquire data from large

numbers of samples is prohibitive. For example, a recent study30

reported the quantitative evaluation of classification using large

sample and data sets that required many months to acquire.

Reducing data acquisition time through automated noise

reduction will help reduce time in laboratory studies. When the

approach is translated to clinical venues, it will serve to enhance

the speeds and throughput of samples. As an example, Fig. 7

illustrates the benefits of using automated noise reduction.

Fig. 5 (A) Acquired high SNR data and simulated noisy spectra obtained by adding noise (s¼ 0.001, 0.01, 0.1 and 0.4 a.u.), showing the degradation in

data quality. Spectra are offset for clarity. (B) Corresponding spectra after noise reduction. (C) Absorption spectrum (1-scan in black) compared to the

resulting spectrum from the same pixel after noise reduction (blue) and to that acquired by averaging 64 scans (red).

Fig. 6 Noise before (input noise) and after application of the algorithm

(output noise). An order of magnitude improvement can be observed.
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Prostate tissue is classified into its constituent cell types. Classi-

fication is inaccurate for the higher noise case but is recovered

when the noise is reduced. The time for data acquisition for this

500 mm � 500 mm image set was reduced from �45 min to less

than 2 min. While the result demonstrates qualitative agreement

between the classified images, we examine next a detailed quan-

titative assessment of the fidelity of inverse transformed data and

the benefits of noise rejection for tissue classification.

The accuracy of tissue classification is related to SNR of the

data, as has been demonstrated previously for prostate tissue.45

Here, we sought to apply the same exercise to breast tissue. We

acquired data from 10 tissue samples consisting of almost 8000

spectra per sample. The samples contain a variety of cell types

and disease states. As a first step towards classification for

disease diagnoses, breast tissue is divided into two cell types

(epithelial cells, which are indicated in green, and stromal cells,

which are indicated in magenta). The effect of decreasing data

quality can be seen in classified images shown in Fig. 8A–D (top

row). Noise in the underlying absorbance data increases from A

to D, thereby noise in the classified images increases progres-

sively until all ability to segment tissue is lost for noise levels�0.1

a.u (Fig. 8D). We quantified classification accuracy, further as

measured by calculating the area under the curve (AUC) of the

receiver operating curve(ROC)46 for pixels that meet the

threshold for classification, in Fig. 8 (E). As a function of average

noise in the absorbance data, AUC values finally fall to about

0.5, which is equivalent to random guessing and does not provide

any useful classification information. At the higher noise levels,

some tissue pixels are not even recognized as meeting the

threshold for inclusion. For intermediate noise levels, classifica-

tion accuracy decreases.

Fig. 7 Effect of automated noise reduction on prostate tissue classifi-

cation. Top row: classification results, Bottom row: absorbance in a tissue

sample at 1080 cm�1 (A) high SNR data in which measured baseline noise

is �0.001 a.u. with the corresponding classified images showing three

types of cells. (B) Lower SNR data in which measured baseline noise is

�0.005 a.u., demonstrating that the classification becomes noisy and (C)

noise reduced data set obtained from the data in (B), demonstrating that

the classification errors are reduced.

Fig. 8 Effect of noise in the absorbance data on image classification is illustrated for breast tissue in A–D (top panel), where the noise in the data is

calculated to be 0.0001, 0.001, 0.001 and 0.1 a.u., respectively. (E) Classification accuracy, as measured by the area under the receiver operating

characteristic curve, decreases with increasing noise for both cell types. Image classification is shown upon using the noise reduction algorithm (A–D,

bottom panel). (F) Classification accuracy before and after noise reduction.
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The impact of noise reduction on classification is demon-

strated in the bottom panel of Fig. 8. Classified images for each

noise-reduced case (A–D) demonstrate that classification accu-

racy for all cases appear to be comparable to classification

accuracy for low noise cases. Examination of classified images

and classification accuracy values indicates that noise reduction

improves classifier performance in each case. For low noise data,

noise reduction does not appear to significantly impact classifi-

cation since the classification accuracy is almost 100%. On the

other hand, noise reduction significantly improves classification

from FT-IR spectroscopic imaging data with higher noise levels.

Hence, a potential route to faster data acquisition for histopa-

thology, without the need to modify hardware or change any

experimental configuration, can be proposed based on post-

processing noise reduction. The ten-fold increase in noise of the

data to provide the same classification accuracy implies that

�100-fold decrease in data acquisition time may be obtained.

Instead of requiring �300 h (12 days) to scan a 1 cm � 1 cm area

with a large focal plane detector, the proposed approach will

allow the same in �3 h. This conclusion is one of the more

important aspects of this study, implying that a careful noise

rejection protocol can speed up data acquisition to make present

FT-IR imaging instrumentation perform analyses within

clinically acceptable time periods.

5. Conclusions

An objective eigenimage selection scheme based on structural

features has been proposed here for automated noise reduction

after data acquisition. An order of magnitude reduction in noise

could be achieved using this algorithm when the noise was not

very low. Applied to obtaining results from samples, for example

for tissue classification, there is an equivalent recovery of correct

results at higher noise levels. The improvement translates directly

into a reduction in time required for data collection. It must be

noted that the gain here is through post-acquisition computa-

tional techniques and does not involve changes in instrumenta-

tion hardware or data acquisition schemes. Hence, it is easy to

implement and inexpensive to deploy. It is anticipated that the

automated nature of the proposed approach will allow it to

become routinely applied to enhance data quality and the recover

scientific results with lower experimental efforts (time, expense

and hardware) in data acquisition.
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a b s t r a c t

There is an underlying assumption on most model building processes: given a learned clas-
sifier, it should be usable to explain unseen data from the same given problem. Despite this
seemingly reasonable assumption, when dealing with biological data it tends to fail; where
classifiers built out of data generated using the same protocols in two different laboratories
can lead to two different, non-interchangeable, classifiers. There are usually too many
uncontrollable variables in the process of generating data in the lab and biological varia-
tions, and small differences can lead to very different data distributions, with a fracture
between data.
This paper presents a genetics-based machine learning approach that performs feature

extraction on data from a lab to help increase the classification performance of an existing
classifier that was built using the data from a different laboratory which uses the same pro-
tocols, while learning about the shape of the fractures between data that motivated the bad
behavior.
The experimental analysis over benchmark problems together with a real-world problem

on prostate cancer diagnosis show the good behavior of the proposed algorithm.
� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The assumption that a properly trained classifier will be able to predict the behavior of unseen data from the same prob-
lem is at the core of any automatic classification process. However, this hypothesis tends to prove unreliable when dealing
with biological (or other experimental sciences) data, especially when such data is provided by more than one laboratory,
even if they are following the same protocols to obtain it.

The specific problem this paper attempts to solve is the following: we have data from one laboratory (dataset A), and de-
rive a classifier from it that can predict its category accurately. We are then presented with data from a second laboratory
(dataset B). This second dataset is not accurately predicted by the classifier we had previously built due to a fracture between
the data of both laboratories. We intend to find a transformation of dataset B (dataset S) where the classifier works.

Evolutionary computing, as introduced by Holland [27]; is based on the idea of the survival of the fittest, evoked by the
natural evolutionary process. In genetic algorithms (GAs) [21], solutions (genes) are more likely to reproduce the fitter
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they are, and random sporadic mutations help maintain population diversity. Genetic Programming (GP) [33] is a devel-
opment of those techniques, and follows a similar pattern to evolve tree-shaped solutions using variable-length
chromosomes.

Feature extraction, as defined by Wyse et al. [56], ‘consists of the extraction a set of new features from the original fea-
tures through some functional mapping’. Our approach to the problem can be seen as feature extraction, since we build a
new set of features which are functions of the old ones. However, we have a different goal than that of classical feature
extraction, since our intention is to fit a dataset to an already existing classifier, not to improve the performance of a future
one.

In this work, we intend to demonstrate the use of GP-based feature extraction to unveil transformations in order to im-
prove the accuracy of a previously built classifier, by performing feature extraction on a dataset where said classifier should,
in principle, work; but where it does not perform accurately enough. We test our algorithm first on artificially-built problems
(where we apply ad hoc transformations to datasets fromwhich a classifier has been built, and use the dataset resulting from
those transformations as our problem dataset); and then on a real-world application where biological data from two differ-
ent medical laboratories regarding prostate cancer diagnosis are used as datasets A and B.

Even though the method proposed in this paper does not attempt to reduce the number of features or instances in the
dataset, it can still be regarded as a form of data reduction because it unifies the data distributions of two datasets; which
results in the capability of applying the same classifier to both of them, instead of needing two different classifiers, one for
each dataset.

The remainder of this paper is organized as follows: in Section 2, some preliminaries about the techniques used and
some approaches to similar problems in the literature are presented. Section 3 details the real-world biological problem
that motivates this paper. Section 4 has a description of the proposed algorithm GP-RFD; and Section 5 includes the
experimental setup, along with the results obtained, and an analysis. Finally, in Section 6 some concluding remarks
are made.

2. Preliminaries

This section is divided in the following way: in Subsection 2.1 we introduce the notation that has been used in this paper.
Then we include an introduction to GP in Subsection 2.2, a brief summary of what has been done in feature extraction in
Subsection 2.3, and a short review of the different approaches we found in the specialized literature on the use of GP for
feature extraction in Subsection 2.4. We conclude mentioning some works related to the finding and repair of fractures be-
tween data in Subsection 2.5.

2.1. Notation

A classification problem is considered with:

� A set of input variables X = {xi/i = 1, . . . ,nv}, where nv is the number of features (attributes) of the problem.
� A set of values for the target variable (class) C = {Cj/j = {1, . . . ,nc}}, where nc is the number of different values for the class
variable.

� A set of examples E ¼ feh ¼ ðeh1; . . . ; ehnv ; C
hÞ=h ¼ 1; . . . ;neg, where Ch is the class label for the sample eh, and ne is the num-

ber of examples.

When describing the problem, we mention datasets A, B and S. They correspond to:

� A: the original dataset that was used to build the classifier.
� B: the problem dataset. The classifier is not accurate on this dataset, and that is what the proposed algorithm attempts to
solve.

� S: the solution dataset, result of applying the evolved transformation to the samples in dataset B. The goal is to have the
classifier performance be as high as possible on this dataset.

When performing experiments and obtaining the evolved expressions, we use the following notation: when artificially
creating a dataset B by means of a fabricated transformation over dataset A, we have B = {bi /i = 1, . . . ,nv} be the attributes
in dataset B and A = {ai /i = 1, . . . ,nv} be the ones from dataset A. In appendix A, we show the learned transformations for
the prostate cancer problem. The attributes shown are those corresponding to dataset S, and are represented as S = {si/
i = 1, . . . ,nv}.

2.2. Genetic programming

A GA [21] is a stochastic optimization technique inspired by nature’s development of useful characters. It is based on the
idea of survival of the fittest [11] in the following way: given a population of possible solutions to a problem (represented by
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chromosomes), there is some selection procedure that favors the fitter ones (i.e., the ones that provide a higher-quality solu-
tion); and the selected chromosomes get an opportunity to pass down their genetic material to the next generation via some
crossover operator; which usually builds new individuals from the combination of old ones. In some variations of the algo-
rithm, random mutations are sporadically introduced to help maintain biological diversity in the population.

GP, as proposed by John Koza in 1992 [33], uses a selectorecombinative schema where the solutions are represented by
trees; which are encoded as variable-length chromosomes. It was originally designed to automatically develop programs, but
it has been used for multiple purposes due to its high expressive power and flexibility. In the words of Poli and Langdon [46],
‘GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a
high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random com-
puter programs, and progressively refines them through processes of mutation and sexual recombination, until solutions
emerge. This is all done without the user having to know or specify the form or structure of solutions in advance. GP has
generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable
inventions’.

There are a few details about GP that make it different from standard GAs:

� Crossover: the most commonly used operator is one-point crossover, which is analogous to the GA classical one, but
where subtrees instead of a specific gene signal where the cut is made.

� Even though mutation was used in the early literature regarding the evolution of programs (see [7,10,16]) Koza chose not
to use it [33,34], as he wished to demonstrate that mutation was not necessary. This has significantly influenced the field,
and mutation was often omitted from GP runs. However, mutation has proved useful since then (see [5,42], for example);
and its use is widely spread nowadays. Multiple different mutation operators have been proposed in the literature [44].

� Treatment of constants: the discovery of constants is one of the hardest issues in GP. Koza proposed a solution
called Ephemeral Random Constant (ERC), which uses a fixed terminal (e) to represent a constant. The first time
one of such constants is evaluated, it gets assigned a random value. From there on, it retains that value throughout
the whole run. A number of alternatives have been proposed in the literature [14,49], but ERC remains the most
used one.

� Automatically defined functions: ADFs were also first proposed by Koza [34]. The idea is to permit each individual to
evolve more than one tree simultaneously; having the extra trees work as primitives that can be called from the main
one.

GP has been applied often to classification [13]. Among the latest advances in the field, we would like to mention those
dedicated to high dimensional problems [35,6], variations in population size [31,32], and applications to other related fields
[58,3].

2.3. Feature extraction

Feature extraction creates new features as functional mappings of the old ones. It has been used both as a form of pre-
processing, which is the approach we use in this paper, and also embedded with a learning process in wrapper techniques.
An early proposer of such a termwas probablyWyse in 1980, in a paper about intrinsic dimensionality estimation [56]. There
are multiple techniques that have been applied to feature extraction throughout the years, ranging from principal compo-
nent analysis to support vector machines to GAs (see [28,45,43], respectively, for some examples).

Among the foundations papers in the literature, Liu’s book in 1998 [38] is one of the earlier compilations of the field. As a
result of a workshop held in 2003 [24], Guyon and Elisseeff published a book with an important treatment of the foundations
[25].

2.4. Genetic programming-based feature extraction

GP has been used extensively to optimize feature extraction and selection tasks. One of the first contributions in this line
was the one published by Tackett in 1993 [53], who applied GP to feature discovery and image discrimination tasks.

We can consider two main branches in the philosophy of GP-based feature extraction:
On one hand, we have the proposals that focus only on the feature extraction procedure, of which there are multiple

examples: Sherrah et al. [50] presented in 1997 the evolutionary pre-processor (EPrep), which searches for an optimal fea-
ture extractor by minimizing the misclassification error over three randomly selected classifiers. Kotani et al.’s work from
1999 [30] determined the optimal polynomial combinations of raw features to pass to a k-nearest neighbor classifier. In
2001, Bot [8] evolved transformed features, one-at-a-time, again for a k-NN classifier, utilizing each new feature only if it
improved the overall classification performance. Zhang and Rockett, in 2006, [61] used multiobjective GP to learn optimal
feature extraction in order to fold the high-dimensional pattern vector to a one-dimensional decision space where the clas-
sification would be trivial. Lastly, also in 2006, Guo and Nandi [23] optimized a modified Fisher discriminant using GP, and
then Zhang et al. extended their work by using a multiobjective approach to prevent tree bloat [62], and applied a similar
method to spam filtering [60].
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On the other hand, some authors have chosen to evolve a full classifier with an embedded feature extraction step. As an
example, Harris [26] proposed in 1997 a co-evolutionary strategy involving the simultaneous evolution of the feature extrac-
tion procedure along with a classifier. More recently, Smith and Bull [52] developed a hybrid feature construction and selec-
tion method using GP together with a GA. FLGP, by Yin et al. [37] is yet another example, where ‘new features extracted by
certain layer are used to be the training set of next layer’s populations’.

2.5. Finding and repairing fractures between data

Throughout the literature there have been a number proposals to quantify the amount of dataset shift (in other words, the
size of the fracture in the data). This shift is usually due to time passing (the data comes from the same source at a latter
time), but it can also be due to the data being originated by different sources, as is the case in this paper. Some of the most
relevant works in the field are: Wang et al. [54], where the authors present the idea of correspondence tracing. They propose
an algorithm for the discovering of changes of classification characteristics, which is based on the comparison between two
rule-based classifiers, one built from each dataset. Yang et al. [57] presented in 2008 the idea of conceptual equivalence as a
method for contrast mining, which consists of the discovery of discrepancies between datasets. Lately, it is important to
mention the work by Cieslak and Chawla [9], which presents a statistical framework to analyze changes in data distribution
resulting in fractures between the data.

A different approach to fixing data fractures relies on the adaptation of the classifier. Quiñonero-Candela et al. [47] edited
a very interesting book on the topic, including several specific proposals to repair fractures between data (what they call
dataset shift). There are two main differences between the usual proposals in the literature and this contribution: first, they
are most often based on altering the classifier, while we propose keeping it intact and transforming the data. Second, most
authors focus on covariate shift, a specific kind of data fracture, but the method we propose here is more general and can
tackle any kind of shift.

3. Case study: prostate cancer diagnosis

This section begins with an introduction to the importance of the problem in Subsection 3.1. The diagnostic procedure is
summarized in Subsection 3.2, and the reason to apply GP-RFD to this problem is shown in Subsection 3.3. Finally, the
preprocessing the data went through is presented in Subsection 3.4.

3.1. Motivation

Prostate cancer is the most common non-skin malignancy in the western world. The American Cancer Society estimated
192,280 new cases and 27,360 deaths related to prostate cancer in 2009 [2]. Recognizing the public health implications of
this disease, men are actively screened through digital rectal examinations and/or serum prostate specific antigen (PSA) level
testing. If these screening tests are suspicious, prostate tissue is extracted, or biopsied, from the patient and examined for
structural alterations. Due to imperfect screening technologies and repeated examinations, it is estimated that more than
one million people undergo biopsies in the US alone.

3.2. Diagnostic procedure

Biopsy, followed by manual examination under a microscope is the primary means to definitively diagnose prostate can-
cer as well as most internal cancers in the human body. Pathologists are trained to recognize patterns of disease in the archi-
tecture of tissue, local structural morphology and alterations in cell size and shape. Specific patterns of specific cell types
distinguish cancerous and non-cancerous tissues. Hence, the primary task of the pathologist examining tissue for cancer
is to locate foci of the cell of interest and examine them for alterations indicative of disease. A detailed explanation of the
procedure is beyond the scope of this paper and can be found elsewhere [36,41,40].

Operator fatigue is well-documented and guidelines limit the workload and rate of examination of samples by a single
operator (examination speed and throughput). Importantly, inter- and intra-pathologist variation complicates decision mak-
ing. For this reason, it would be extremely interesting to have an accurate automatic classifier to help reduce the load on the
pathologists. This was partially achieved in [41], but some issues remain open.

3.3. The generalization problem

Llorà et al. [41] successfully applied a genetics-based approach to the development of a classifier that obtained human-
competitive results based on FTIR data. However, the classifier built from the data obtained from one laboratory proved
remarkably inaccurate when applied to classify data from a different hospital. Since all the experimental procedure was
identical; using the same machine, measuring and post-processing; and having the exact same lab protocols, both for tissue
extraction and staining; there was no factor that could explain this discrepancy.
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What we attempt to do with this work is develop an algorithm that can evolve a transformation over the data from the
second laboratory, creating a new dataset where the classifier built from the first lab is as accurate as possible. This evolved
transformation would also provide valuable information, since it would allow the scientists processing the tissues analyze
the differences between their results and those of other hospitals.

3.4. Pre-processing of the data

The biological data obtained from the laboratories has an enormous size (in the range of 14 GB of storage per sam-
ple); and parallel computing was needed to achieve better-than-human results. For this reason, feature selection was
performed on the dataset obtained by FTIR. It was done by applying an evaluation of pairwise error and incremental
increase in classification accuracy for every class, resulting in a subset of 93 attributes. This reduced dataset provided
enough information for classifier performance to be rather satisfactory: a simple C4.5 classifier achieved �95% accuracy
on the data from the first lab, but only �80% on the second one. The dataset consists of 789 samples from one labora-
tory and 665 from the other one. These samples represent 0.01% of the total data available for each data set, which were
selected applying stratified sampling without replacement. A detailed description of the data pre-processing procedure
can be found in [15].

4. A proposal for GP-based feature extraction for the repairing of fractures between data (GP-RFD)

This section is presented in the following way: first, a justification for the choice of GP is included. Subsection 4.1 details
how the solutions are represented, then the fitness evaluation procedure and the genetic operators are introduced in Sub-
sections 4.2 and 4.3 respectively. Then, the parameter choices are explained in Subsection 4.4, while the function set is in
Subsection 4.5. Finally, the execution flow of the whole procedure is shown in Subsection 4.6.

The problemwe are attempting to solve is the design of a method that can create a transformation from a dataset (dataset
B) where a classification model is not accurate enough into a new one where it is (dataset S). Said classifier is kept unchanged
throughout the process.

We decided to use GP to solve the problem for a number of reasons: first, it is well suited to evolve arbitrary expressions
because its chromosomes are trees. This is useful in our case because we want to have the maximum possible flexibility in
terms of the functional expressions that can be present in the feature extraction procedure. Second, GP provides highly-inter-
pretable solutions. This is an advantage because our goal is not only to have a new dataset where the classifier works, but
also to analyze what was the problem in the first dataset.

The specific decisions to be made once GP was chosen as the technique to apply are how to represent the solutions, what
terminals and operators to choose, how to calculate the fitness of an individual and which evolutionary parameters (popu-
lation size, number of generations, selection and mutation rates, etc.) are appropriate for each specific problem. To clarify
some of the points, let us have a binary 2-dimensional problem as an example, and let us use a function set composed of
{+,�,�,	}.

4.1. Solutions representation: context-free grammar

The representation issue was solved by extending GP to evolve more than one tree per solution. Each individual is com-
posed by n trees, where n = nv, the number of attributes present in the dataset (we are trying to develop a new dataset with
the same number of attributes as the old one). In the tree structure, the leaves are either constants (we use the Ephemeral
Random Constant approach) or attributes from the original dataset. The intermediate nodes are functions from the function
set, which is specific to each problem.

The attributes on the transformed dataset are represented by algebraic expressions. These expressions are generated
according to the rules of a context-free grammar which allows the absence of some of the functions or terminals. The gram-
mar corresponding to the example problem would look like this:

Start ! Tree Tree

Tree ! Node

Node ! Node Operator Node

Node ! Terminal

Operator ! þj � j � j	
Terminal ! x0jx1jE
E ! realNumberðrepresented by eÞ

An individual in the example problemwould have two trees; and each of themwould be allowed to have any of the functions
in the function set, which for this example is {+,�,�,	}, in their intermediate nodes; and any of {x0,x1,e} in the leaves. This,
for example, would be a legal individual:
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4.2. Fitness evaluation

The fitness evaluation procedure is probably the most treated aspect of design in the literature when dealing with
GP-based feature extraction. As has been stated before, the idea is to have the provided classifier’s performance drive the
evolution. To achieve that, GP-RFD calculates fitness in the following way:

1. Prerequisite: a previously built classifier (the one built from dataset A) needs to be provided. It is used as a black
box.

2. Given an individual composed of a list of expression trees (one corresponding to each extracted attribute), a new
dataset (dataset S) is built applying the transformations encoded in those expression trees to all the samples in
dataset B.

3. The fitness of the individual is the classifier’s accuracy on dataset S (training-set accuracy), calculated as the ratio of
correctly classified samples over the total number of samples.

Fig. 1 presents a schematic representation of the procedure.

4.3. Genetic operators

This section details the choices made for selection, crossover and mutation operators. Since the objective of this work is
not to squeeze the maximum possible performance from GP, but rather to show that it is an appropriate technique for the
problem and that it can indeed solve it, we did not pay special attention to these choices, and picked the most common ones
in the specialized literature.

� Tournament selection without replacement. To perform this selection, k individuals are first randomly picked from the
population (where k is the tournament size), while avoiding using any member of the population more than once. The
selected individual is then chosen as the one with the best fitness among those picked in the first stage.

� One-point crossover: for each dimension, a subtree from one of the parents is substituted by one from the other parent.
The procedure is specified in Algorithm 1. An example, for one of the dimensions only, can be seen in Fig. 2.

Fig. 1. Schematic representation of the fitness evaluation procedure.
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� Swap mutation: this is a conservative mutation operator, that helps diversify the search within a close neighborhood of a
given solution. It consists of exchanging the primitive associated to a node by one that has the same number of
arguments.

Algorithm 1. One-point crossover procedure

FORALL trees on each individual
1. Randomly select a non-root non-leave node on each of the two parents.
2. The first child is the result of swapping the subtree below the selected node in the father for that of the mother.
3. The second child is the result of swapping the subtree below the selected node in the mother for that of the father.

� Replacement mutation: this is a more aggressive mutation operator that leads to diversification in a larger neighborhood.
The procedure to perform this mutation is the following:
1. Randomly select a non-root non-leave node on the tree to mutate.
2. Create a random tree of depth no more than a fixed maximum depth. This parameter has not been tinkered with, since

the goal of this study was not to squeeze the maximum performance out of the proposed method, but rather to check
its viability. Future work could tackle this issue.

3. Swap the subtree below the selected node for the randomly generated one.

4.4. Parameters

The evolutionary parameters that were used for the experimental study are detailed in Table 1. As it was mentioned be-
fore, not much attention was payed to optimizing the parameters. Because of this the crossover and mutation probabilities,
along with the number of generations to run, were fixed to the usual values in the literature (we could call them ‘default
values’) and were not changed in any of the experiments.

Some of the evolutionary parameters are problem dependent, to select an appropriate value for them we used the follow-
ing rules:

� Population size: since the only measure of difficulty we know about each of our problems a priori is the number of attri-
butes present in the dataset (nv), we have to fix the population size as a function of it. In the experiments carried out in
this study, we found 400�nv to be a large enough population to achieve satisfactory results. This parameter is problem-
dependent, so what we are fixing here is an upper bound for the population size needed. We found that, by following this

Fig. 2. Crossover example for one of the dimensions only, this is repeated for all dimensions (trees) on each individual.

Table 1
Evolutionary parameters for a nv-dimensional problem.

Parameter Value

Number of trees nv
Population size 400�nv
Duration of the run 50 generations
Selection operator Tournament without replacement
Tournament size log2(nv) + 1
Crossover operator One-point crossover
Crossover probability 0.9
Mutation operator Replacement & Swap mutations
Replacement mutation probability 0.001
Swap mutation probability 0.01
Maximum depth of the swapped in subtree 5
Function set Problem dependent
Terminal set {x0; x1; . . . ; xnv � 1,e}
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rule, GP-RFD consistently achieved good results; being able to solve the harder transformations, even though it was
excessive for the easier ones and thus resulted in slower execution times. If harder problems than the ones studied in this
paper were to be tackled, this parameter might need to be revised.

� Tournament size: since we are increasing the population size as a function of nv, an increase of the selection pressure is
needed too. The formula we used to calculate tournament size is: log2(nv) + 1. Again, this empirical estimation produced
the best results; while an excessive pressure produced too fast of a convergence into local optima, and not enough
pressure prevents GP-RFD from converging at all.

Table 2
Datasets used.

Dataset Attributes Samples Classes Class distribution Attr. type

Linear synthetic 2 1000 2 50–50% Real
Tao 2 1888 2 50–50% Real
Iris 4 150 3 33–33–33% Real
Phoneme 5 5404 2 70–30% Real
Wisconsin 9 683 2 65–35% Real
Heart 13 270 2 55–45% Real
Wine 13 178 3 33–39%–27% Real
Wdbc 30 569 2 65–45% Real
Ionosphere 34 351 2 65–45% Real
Sonar 60 208 2 54–46% Real
Mux-11 11 2048 2 50–50% Nominal
Cancer (A) 93 789 2 60–40% Real
Cancer (B) 93 665 2 60–40% Real

Table 3
Transformations performed on the Tao dataset.

Experiment Rotation Translate & extrude

Transformation applied b0 = a0�cos(1) + a1�sin(1) b0 = a0�3 + 2
b1 = a0�sin(1) + a1�cos(1)

Table 4
Transformations performed on the UCI and ELENA datasets.

Dataset In-set transformation Out-of-set transformation

Iris b2 = a2 + a2 b3 ¼ ea3

Phoneme b0 = a0 � 0.4 b0 = sin(a0)
b3 = a3�2.5 b3 = cos(a3)

Wisconsin b1 = a1 + 2 b1 = cos(a1)
b5 = a5�3 b5 = sin(a5)

Heart b2 = a2�2 b2 = sin(a2)
b11 = a11 + 3 b11 ¼ ea11

Wine b9 = a9 � 1 b9 = sin(a9)
b12 = a12�2 b12 = cos(a12)

Wdbc b26 = a26 � 1 b26 = sin(a26)
b27 = a27�3 b27 = cos(a27)

Ionosphere b4 = a4 � 0.5 b4 ¼ ea4

b7 = a7�2 b7 = sin(a7)

Sonar b7 = a7 + 0.3 b7 = sin(a7)
b43 = a43�2 b43 ¼ ea43

Table 5
Transformations performed on the Multiplexer-11 dataset.

Experiment Bit flip Column swap

Transformation applied b1 = not(a1) b1 = a2
b2 = a3
b3 = a1
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4.5. Function set

Which functions to include in the function set are usually dependent on the problem. , , , Since one of our goals is to have
an algorithm as universal and robust as possible, where the user does not need to fine-tune any parameters to achieve good
performance; we decided not to study the effect of different function set choices. The used function sets are chosen to be
close to the default ones most authors use in the literature, and were extracted in all cases from {+,�,�,	,exp,cos}. The
benchmark experiments did not use {exp,cos}, since we intended to test the capability of the method to unveil transforma-
tions that did not include functions in the function set. The specific choices for each of the experiments can be seen in
Table 6.

4.6. Execution flow

Algorithm 2 contains a summary of the execution flow of the GP procedure, which follows a classical evolutionary
scheme. It stops after a user-defined number of generations, providing as a result the best individual (i.e., transformation)
it has ever found.

Algorithm 2. Execution flow of the GP procedure

1. Randomly create the initial population by applying the context-free grammar presented in Subsection 4.1.
2. Repeat Ng times (where Ng is the number of generations)

2.1 Evaluate the current population, using the procedure shown in Subsection 4.2.
2.2 Apply selection and crossover to create a new population that will replace the old one.
2.3 Apply the mutation operators to the new population.

3. Return the best individual ever seen.

5. Experimental study

This section is organized in the following way: to begin with, a general description of the experimental procedure is pre-
sented in Subsection 5.1, along with the datasets that we have used for our testing (both the benchmark problems and the
prostate cancer dataset); and also in the benchmarks’ case the transformations performed on each of them. The parameters
used for each experiment are shown in Subsection 5.2; followed by a presentation of the benchmark experimental results in
Subsection 5.3. Finally, the results obtained on the prostate cancer problem are presented in Subsection 5.4.

5.1. Experimental framework, datasets and transformations

The goal of the experiments was to check how effective GP-RFD was in finding a transformation over dataset B that would
increase the provided classifier’s accuracy. To validate our results, we employed a 5-fold cross validation technique [29]. We
used the beagle library [17] for our GP implementation.

The experimental study is fractioned in two parts. In the first one, a synthetic set of tests is built from a few well-known
benchmark datasets. The procedure followed in these experiments was (see Fig. 3 for a schematic representation):

1. Split the original dataset in two halves with equal class distribution.
2. Consider the first half, to be dataset A.
3. From dataset A, build a classifier. We chose C4.5 [48], but any other classifier would work exactly the same; due to the

fact that GP-RFD uses the learned classifier as a black box.

Table 6
Experimental parameters.

Dataset Population size Tournament size Function set

Linear synthetic 800 2 {+,�,�,	}
Tao 800 2 {+,�,�,	}
Iris 1600 3 {+,�,�,	}
Phoneme 2000 3 {+,�,�,	}
Wisconsin 3600 4 {+,�,�,	}
Heart 5200 4 {+,�,�,	}
Wine 5200 4 {+,�,�,	}
Wdbc 12,000 5 {+,�,�,	}
Ionosphere 13,600 6 {+,�,�,	}
Sonar 24,000 6 {+,�,�,	}
Mux-11 4400 4 {+,�,�,	}
Cancer 37,200 6 {+,�,�,	,exp,cos}
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4. Apply a transformation over the second half of the original dataset, creating dataset B. The transformations we tested
were designed to check GP-RFD’s performance on different types of problems, including both linear and non-linear trans-
formations. A description of each of them can be found in the next subsection.

5. The performance of the classifier built in step 2 is significantly worse on dataset B than it is on dataset A. This is the start-
ing point on the real problem we are emulating.

6. Apply GP-RFD to dataset B in order to evolve a transformation that will create a solution dataset S. Use 5-fold cross val-
idation over dataset S, so that training and test set accuracy results can be obtained.

7. Check the performance of the step 2 classifier on dataset S. Ideally, it should be close to the one on dataset A, which would
mean GP-RFD has successfully discovered the hidden transformation and inverted.

The second part of the study is the application of the proposed algorithm to the prostate cancer problem. The steps fol-
lowed in this case were:

1. Consider each of the provided datasets to be datasets A and B respectively.
2. From dataset A, build a classifier. Use 5-fold cross validation to obtain training and test-set performance results.
3. Apply GP-RFD to dataset B in order to evolve a transformation that will create a solution dataset S. Use 5-fold cross

validation over dataset S, so that training and test set accuracy results can be obtained.
4. Check the performance of the step 2 classifier on dataset S. Ideally, it should be close to the one on dataset A, meaning

GP-RFD has successfully discovered the hidden transformation and inverted it.

The selected datasets are summarized in Table 2. A short description and motivation for each of the datasets follows, and
this subsection is concluded with the specification of the transformations that were fabricated to test the algorithm on each
of the benchmark datasets. For the two-dimensional problems, the transformations are also graphically represented.

Note that the transformations in the prostate cancer problem are not specified. This is due to it being a real-world prob-
lem and not a fabricated one, so the implicit transformations in the data were unknown a priori.

� Linear synthetic dataset: we have called the first dataset ‘Linear synthetic’. It was created specifically for this work, with
the idea of having an easily representable linearly separable dataset to work with. It was chosen to check the performance
of GP-RFD on some simple transformations, without the added difficulty of having a complex original dataset. The dataset
can be seen in Fig. 4. We applied three transformations to this dataset A: rotation, translation and extrusion and circle.
The transformed datasets (datasets B on the experiments) can be seen in Figs. 5–7 respectively.

Fig. 3. Schematic representation of the experimental procedure with benchmark datasets.

Fig. 4. Linear synthetic dataset, dataset A.
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Fig. 5. Rotation problem, transformed dataset.

Fig. 6. Translation & extrusion problem, transformed dataset.

Fig. 7. Circle problem, transformed dataset.

Fig. 8. Tao dataset. This is dataset A, over which the different transformations are applied, and the transformed datasets have to fit to the same classifier this
dataset does.
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� Tao: the next step to check the usefulness of GP-RFD is starting from a harder dataset. To this end, we chose the Tao data-
set, still a 2-dimensional problem but where classification is much harder. This dataset is also built artificially [39]. The
dataset can be seen, before any transformations (dataset A), in Fig. 8. Mirroring the transformations applied over the lin-
ear synthetic dataset, we chose to transform the original Tao dataset by rotating it (Fig. 9); or by translating and extruding
(Fig. 10). The transformations applied to Tao can also be seen in Table 3.

� UCI and ELENA datasets: once GP-RFD has been tested in small (with a low number of attributes) datasets, it is useful to
see how it fares in bigger benchmark problems. We chose a few different datasets from the UCI database [4], as well as the
ELENA project [22]:
- Iris: classification of iris plants (UCI).
- Phoneme: distinguish between nasal and oral sounds (ELENA).
- Wisconsin: diagnosis of breast cancer patients (UCI).
- Heart: detect the absence or presence of heart disease (UCI).
- Wine: classification of different types of Italian wines (UCI).
- Wdbc: determination of whether a found tumor is benign or malignant (UCI).
- Ionosphere: radar data where the task is to decide is a given radar return is good or bad (UCI, modified as found in the
KEEL database [1]).

- Sonar: distinguishing between rocks and metal cylinders from sonar data (UCI).

We performed two different experiments on each of the datasets. In the first experiment, the transformation is created
using functions that appear in the function set of the GP procedure (more specifically, one of the attributes is added to itself).
We named this experiment ‘in-set transformation’. The second one transforms the dataset by using functions that do not
appear in the GP function set. The name for this experiment is ‘out-of-set transformation’. The exact details for these trans-
formations can be found in Table 4. Any attribute not specified as being part of the transformation in the tables is assumed to
be unchanged.
� Multiplexer-11: since GP-RFD should be flexible enough to be able to tackle datasets with nominal attributes, one of these
datasets was included in the testing. In this work, we chose the Multiplexer problem. This is a binary problem where
some of the bits act as address, and the remaining bits are data registers. The correct classification for a given input is
the value of the register pointed by the address bits. The specific instance used here is Multiplexer-11, a dataset with
11 binary attributes (where the first three act as address, and the remaining eight as registers); and 211 = 2048 samples.
Two different transformations were tested: in the first one, of the address bits was flipped; while in the second experi-
ment there was an attribute swap, in a circular shift. The details can be found in Table 5.

� Prostate cancer: as was explained in Section 3, the solution to this problem is the main motivation for this work. Since we
were provided with data from two real laboratories, there was no need to fabricate any transformations: we chose one the
data from one of the laboratories as dataset A and the other one as dataset B.

Fig. 9. Rotated Tao, transformed dataset.

Fig. 10. Translated and extruded Tao, transformed dataset.
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5.2. Parameters

In this section, we detail the parameters used for each of the datasets, including both the evolutionary parameters and the
GP setup. The parameters were chosen following the rules detailed in Section 4.4.

As can be seen in Table 6, the population sizes are large. This is mostly due to GP being a technique that traditionally
requires large population sizes to be effective, a factor which is aggravated by the fact that GP-RFD evolves multiple expres-
sion trees simultaneously (one for each attribute in the dataset). We acknowledge this issue provokes long execution times
for some of the experiments, but considered it a secondary concern and did not address it in this work.

5.3. Experimental results: benchmark problems

This part presents the results obtained in terms of classifier performance for the benchmark problems, along with a sta-
tistical analysis to evaluate whether GP-RFD is effective.

Table 7 details the performance obtained by the C4.5 classifier on each of the benchmark problems. It includes the clas-
sifier performance, calculated as shown on Subsection 4.2, on:

� Dataset A, which was used to generate the decision tree. A 5-fold cross validation technique was applied, and both train-
ing and test set results are presented.

� Dataset B, which was created by designing an ad hoc transformation.
� Dataset S, which is the result of applying GP-RFD to dataset B, obtaining a transformed dataset where classifier perfor-
mance is increased. A 5-fold cross validation technique was applied, and both training and test set results are presented.

The results show that GP-RFD is capable of reversing nearly all of the fabricated transformations, achieving accuracy rates
that are very close to the ones obtained in the original datasets in both training and test performances. GP-RFD has also pro-
ven capable of generalizing well, as can be seen by the small difference between training and test set classification perfor-
mances in most cases. However, some of the datasets (which, coincidentally, tend to also behave badly in terms of
generalization when building classifiers) present some generalization issues, leading to the inability to fully solve the
problem dataset.

5.3.1. Statistical analysis
To complete the experimental study, we have performed a statistical comparison between the classifier performance over

the following datasets:

� Dataset A, from which the classifier was built.
� Dataset B, artificially built by injecting an ad hoc transformation.

Table 7
Classifier performance results: benchmark problems.

Problem Classifier performance on dataset . . .

A-training A-test B S-training S-test

Linear synthetic – rotation 1.00000 1.00000 0.24930 1.00000 1.00000
Linear synthetic – translation& extrusion 1.00000 1.00000 0.34160 1.00000 0.99800
Linear synthetic – circle 1.00000 1.00000 0.49860 0.96050 0.94400
Tao – rotation 0.98518 0.93750 0.62924 0.94418 0.94255
Tao – translation& extrusion 0.98518 0.93750 0.80403 0.95344 0.93192
Iris – in-set functions 0.97330 0.93333 0.66667 0.99333 0.92000
Iris – out-of-set functions 0.97330 0.93333 0.60000 0.99000 0.92000
Phoneme – in-set functions 0.91895 0.84160 0.75204 0.828978 0.769907
Phoneme – out-of-set functions 0.91895 0.84160 0.59141 0.839871 0.804815
Wisconsin – in-set functions 0.97361 0.93842 0.35380 0.98248 0.93821
Wisconsin – out-of-set functions 0.97361 0.93842 0.88889 0.98321 0.94412
Heart – in-set functions 0.89630 0.72593 0.45296 0.92778 0.79259
Heart – out-of-set functions 0.89630 0.72593 0.60000 0.96296 0.72594
Wine – in-set functions 0.97727 0.89733 0.65556 0.98889 0.90000
Wine – out-of-set functions 0.97727 0.89733 0.40000 0.96944 0.91111
Wdbc – in-set functions 0.98571 0.92143 0.57143 0.98839 0.946428
Wdbc – out-of-set functions 0.98571 0.92143 0.82857 0.98214 0.97500
Ionosphere – in-set functions 0.98286 0.87429 0.70857 0.98571 0.88571
Ionosphere – out-of-set functions 0.98286 0.87429 0.77714 0.98571 0.857143
Sonar – in-set functions 0.93939 0.60601 0.61000 0.95500 0.66000
Sonar – out-of-set functions 0.93939 0.60601 0.51000 0.94750 0.72000
Mux11 – bit flip 1.00000 0.97070 0.50000 0.96951 0.96667
Mux11 – column swap 1.00000 0.97070 0.62500 0.97195 0.96765
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� Dataset S-test, the result of applying GP-RFD over dataset B (test-set results).

In [12,18–20] a set of simple, safe and robust non-parametric tests for statistical comparisons of classifiers are recom-
mended. One of them is theWilcoxon signed-ranks test [55,51], which is the test that we have selected to do the comparison.

This is analogous to the paired t-test in non-parametric statistical procedures; therefore it is a pairwise test that aims to
detect significant differences between two sample means, that is, the behavior of two algorithms. It is defined as follows: let
di be the difference between the performance scores of the two classifiers on the ith dataset out of Nds datasets. The differ-
ences are ranked according to their absolute values; average ranks are assigned in the case of ties. Let R+ be the sum of ranks
for the data-sets in which the first algorithm outperformed the second, and R� the sum of ranks for the opposite. Ranks of
di = 0 are split evenly among the sums; if there is an odd number of them, one is ignored:

Rþ ¼
X
di>0

ankðdiÞ þ 1
2

X
di¼0

rankðdiÞ

R� ¼
X
di<0

rankðdiÞ þ 1
2

X
di¼0

rankðdiÞ ð1Þ

Let T be the smaller of the sums, T =min(R+,R�). If T is less than or equal to the value of the distribution of Wilcoxon for Nds

degrees of freedom [59], the null hypothesis of equality of means is rejected; this will mean that a given classifier outper-
forms their opposite, with the p-value associated.

The Wilcoxon signed-ranks test is more sensitive than the t-test. It assumes commensurability of differences, but only
qualitatively: greater differences still count for more, which is probably desired, but the absolute magnitudes are ignored.
From a statistical point of view, the test is safer since it does not assume normal distributions. Also, outliers (extremely
good/bad performances) have a smaller effect on the Wilcoxon signed-ranks test than on the t-test.

When the assumptions of the paired t-test are met, the Wilcoxon signed-ranks test is less powerful than the paired t-test.
On the other hand, when the assumptions are not met, the Wilcoxon test is a better choice than the t-test. This is because the
Wilcoxon test can be applied over the averaged results obtained by the algorithms in each data set, without any assumptions
about the characteristics of the distribution of the results obtained.

A complete description of the Wilcoxon signed ranks test and other non-parametric tests for pairwise and multiple com-
parisons, together with software for their use, can be found in the website available at http://sci2s.ugr.es/sicidm/.

As it was mentioned above, the test was applied to compare the classifier performance in datasets A, B and S. The results
can be seen in Table 8. Note that we compare the results in dataset A against those in S both in terms of training and test sets.
However, since the classifier was not built from dataset B, we consider those results test-set related and compare it with
S-test.

So we can conclude GP-RFD is capable of finding transformations resulting in a new dataset S that

1. Significantly outperforms dataset B in terms of classifier performance.
2. Obtains statistically equivalent results to dataset A, both in terms of training and test sets. Since the classifier was built

from dataset A, this means dataset S is a successful repair of the fracture between datasets A and B, assuming class

Table 8
Wilcoxon signed-ranks test results: Benchmark problems.

Comparison R+ R� p-Value Null hypothesis of equality

A-test vs B 275 1 4.77E�007 rejected (A-test outperforms B)
B vs S-test 0 276 2.38E�007 rejected (S-test outperforms B)
A-training vs S-training 147.5 128.5 – accepted
A-test vs S-test 128.5 147.5 – accepted

Fig. 11. Linear synthetic rotation, problem (L) and solution (R) datasets.
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Fig. 12. Linear synthetic translation and extrusion, problem (L) and solution (R) datasets.

Fig. 13. Circle, problem (L) and solution (R) datasets.

Fig. 14. Rotation in Tao, problem (L) and solution (R) datasets.

Fig. 15. Translation and extrusion in Tao, problem (L) and solution (R) datasets.
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distribution did not change. We know this is the case in these experiments due to the way we built datasets A and B, but it
has to be kept in mind when applying the method in other environments.

5.3.2. Graphical results
This section presents graphical representations of some of the obtained results. Since several of the datasets have a high

number of variables that make them extremely hard to chart in a simple way, only the results corresponding to the linear
synthetic dataset (Figs. 11–13) and the Tao dataset (Figs. 14 and 15) are shown. To make the visualization easier, each of the
solution datasets (datasets S) is presented side-by-side with the corresponding problem dataset (datasets B). The original
datasets (datasets A) can be seen in Fig. 4 for the linear synthetic dataset and Fig. 8 for the Tao dataset.

5.4. Prostate cancer experimental results

This section presents the preliminary results for the Prostate Cancer problem, in terms of classifier accuracy. The results
obtained can be seen in Table 9. In that table, dataset A is the one from the first lab; which was used to build the classifier,
dataset B is the one coming from the second lab, and dataset S is the result of the application of GP-RFD.

To check whether the full dataset B was needed to evolve an effective transformation, we also tested using just half of it to
train GP-RFD, and the other half to test (2-fold cross validation). These results are also included in Table 9.

The performance results are excellent for a number of reasons. First and foremost, GP-RFD was able to find a transforma-
tion over the data from the second laboratory that made the classifier work just as well as it did on the data from the first lab,
effectively finding the hidden perturbations that prevented the classifier from working accurately.

The second positive conclusion to be obtained from the results is the generalization power of GP-RFD. As can be observed
from the test results, GP-RFD does not ‘cheat’ by over-learning on the known data, and works well when transforming new,
previously unseen, samples.

Third, the results show GP-RFD was capable of obtaining excellent results using just half of the B dataset to train. This
result highlights the power of the method to unveil the hidden transformation from a relatively low number of samples.

We also performed a Wilcoxon signed-ranks test to evaluate the performance of GP-RFD over the case of study problem.
In order to do it, we used the results from each partition in the 5-fold cross validation procedure. We ran the experiment four
times, resulting in 4 � 5 = 20 performance samples to carry out the statistical test. As we did before, R+ corresponds to the
first algorithm in the comparison winning, and R� to the second one. Table 10 shows the results.

The results on the case study problem are exactly the same as those achieved in the benchmark problems. We can then
conclude GP-RFD was capable of repairing the existing fracture between the data from both laboratories. Again, this conclu-
sion assumes class distribution did not change. It is a given in this case, since we know the class distribution to be equal in
datasets A and B, but is an issue that has to be kept in mind when applying the method to other problems.

6. Concluding remarks

We have presented GP-RFD, a new algorithm that approaches a common problem in real life for which not many solu-
tions have been proposed in evolutionary computing. The problem in question is the repairing of fractures between data
by adjusting the data itself, not the classifiers built from it.

We have developed a solution to the problem by means of a GP-based algorithm that performs feature extraction on the
problem dataset driven by the accuracy of the previously built classifier.

Table 9
Classifier performance results: the prostate cancer problem.

Validation method Classifier performance in dataset . . .

A-training A-test B S-training S-test

5-fold cross validation 0.95435 0.92015 0.83570 0.95191 0.92866
2-fold cross validation 0.95435 0.92015 0.83570 0.95482 0.93223

Table 10
Wilcoxon signed-ranks test results: the prostate cancer problem.

Comparison R+ R� p-Value Null hypothesis of equality

A-test vs B 210 0 1.91E�007 rejected (A-test outperforms B)
B vs S-test 0 210 1.91E�007 rejected (S-test outperforms B)
A-training vs S-training 126 84 – accepted
A-test vs S-test 84 126 – accepted
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We have tested GP-RFD on a set of artificial benchmark problems, where a problem dataset is fabricated by applying an ad
hoc disruption to an original dataset, and it has proved capable of solving all the transformations presented showing good
performance both in train and, more importantly, test data.

We have also being able to apply GP-RFD to a real-world problem where data from two different laboratories regarding
prostate cancer diagnosis was provided, and where the classifier learned from one did not perform well enough on the other.
Our algorithm was capable of learning a transformation over the second dataset that made the classifier fit just as well as it
did on the first one. The validation results with 5-fold cross validation also support the idea that the algorithm is obtaining
good results; and has a strong generalization power.

Lastly, we have applied a statistical analysis methodology that supports the claim that the classifier performance obtained
on the solution dataset significantly outperforms the one obtained on the problem dataset.

There is, however, one point where the proposed method has not been successful. The learned transformations have failed
to provide any information about why the fracture appeared between the data from the two laboratories. We have, however,
included a sample of the transformations learned in appendix A.
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Appendix A. Sample solution from the prostate cancer problem

In this appendix, we include a sample of the learned transformations for the prostate cancer problem, presenting the
transformations corresponding to the highest fitness individual ever found. Due to space concerns, only the attributes rele-
vant to the C4.5 classifier are shown (Fig. 16).
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Shining a new light into molecular 
workings

Francis L Martin

A technique to substantially increase the resolution and imaging area 

of Fourier-transform infrared microspectroscopy, while decreasing the 

amount of time required for image acquisition, may augment the use 

of this technology in biomedical and environmental research.

The application of infrared spectroscopy 

technologies has gained increasing recogni-

tion in recent years as an adjunct support to 

more traditional methodologies, especially in 

cell biology1–3. A report from Hirschmugl, 

Bhargava and co-workers, in this issue of 

Nature Methods4, demonstrates a two orders 

of magnitude improvement to this technique, 

which for the first time genuinely allows 

the acquisition of intracellular chemical 

 information with better than micrometer-

scale spatial resolution. Additionally, this 

group provides the scientific community 

with an experimental setup for acquisition of 

minute-by-minute spectral information over 

the entire mid- infrared region with an excel-

lent signal-to-noise ratio; this could be used 

to nondestructively monitor living biological 

material. In the emerging field of biospec-

troscopy, which has seen several pioneering 

developments over the last two decades5,6, 

this work has the genuine potential to act as 

a bridge for implementing infrared spectros-

copy into mainstream biological practice.

Fourier-transform infrared (FTIR) spectro-

scopy for biological, environmental or bio-

medical applications exploits the fact that 

biomolecules absorb in the mid-infrared fre-

quency range in a manner consistent with the 

chemical-bond composition of the interro-

gated sample. Based on the absorbance pattern 

of the present chemical bonds with an electric 

dipole moment that changes during vibration, 

signature spectra are derived. Applied in imag-

ing format, different FTIR microscopy plat-

forms are available to obtain such chemical 

information, from a benchtop instrument that 

can be found in a typical physics or chemistry 

department to an infrared beamline in one 

of the 50 or so synchrotron facilities world-

wide. A benchtop instrument delivers reason-

able spectral information but limited spatial 

resolution; for instance, it might allow one to 

derive an integrated tissue spectral signature. 

A synchrotron system typically yields a higher 

signal-to-noise ratio and can also approximate 

single-cell spatial resolution.

Of course, not everyone has ready access to 

a synchrotron facility (which typically require 

applications for beam time) and often such 

facilities might not be developed sufficiently 

to integrate the requirements of a biologi-

cal laboratory. The time-consuming nature 

of individual experiments within a limited 

beam time allocation currently minimizes 

the  number of replicates achievable, which 

lessens the robustness of the findings. 

Consequently, the approach of infrared spec-

troscopy to biological or environmental ques-

tions often appears exotic and niche.

FTIR spectroscopy has long been applied 

in the physical sciences as it yields chemical 
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Figure 1 | Chemical imaging of different tissue components in a pixel-by-pixel fashion. The method of 

Nasse et al.4 could be applied to different applications within normal-looking tissue architecture such 

as identifying early cancerous cells or the in situ location of stem cells required to regenerate a tissue. 

Fast imaging at high spatial resolution (<1 micrometer) in living tissue would even allow for analyses 

of cell membranes or organelles. Different components would be identified on the basis of location of 

their unique spectral signatures.
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The fact that FTIR microscopy image 

data now can be acquired in minutes rather 

than hours or days in an evolving live cell 

context opens up new avenues of investiga-

tion, from tracking the cell differentiation 

process2, to shedding new insights into cell 

cycle kinetics to nanoparticle-induced toxic-

ity mechanisms, to looking at host-parasite 

interactions10. In addition, given that infra-

red imaging is nondestructive, this allows 

one to match the point-by-point spectral 

information to more conventional stain-

ing approaches that can be subsequently 

applied; thus, one might envision imaging a 

tissue section containing a glandular element 

suspended in stroma and then matching the 

location of spectral signatures of suspect 

transformed cells or quiescent stem cells 

to more conventional biomarkers (Fig. 1). 

This study4 applies the approach to sections 

of prostate and breast tissue; the resultant 

images show remarkable clarity at a spatial 

resolution hitherto unachievable with infra-

red spectro scopy and over a wider area with 

a much shorter acquisition time.

This advance now leads the way to stimulat-

ing the development of new infrared micro-

scopy systems for routine use. Currently, new  

light sources, such as  quantum cascade lasers, 

are being developed that it is expected will be 

capable of generating the requisite brilliance 

of light in a benchtop system and thus will 

have the potential to generate a similar level 

of spectral quality and spatial resolution as 

a synchrotron-harnessed system, which 

will be necessary to truly make infrared 

microspectroscopy a core technology in the  

biology laboratory. 

Additionally, the technique may have 

important clinical and environmental appli-

cations; infrared microspectroscopy will 

potentially allow a pathologist to examine an 

image of cellular architecture as well as refer-

ence the underlying signature chemical infor-

mation inherent in this picture. Although 

traditional methods such as hematoxylin-

and-eosin staining are ingrained in clinical 

practice, such approaches are often fraught 

with subjectivity and lack molecular detail 

such as conclusive evidence of the earliest 

predisease alterations. Infrared approaches 

allow for objective insight, which could 

facilitate earlier  diagnosis, which would allow 

information about a sample. To apply the 

technique to biological specimens—from 

sample preparation to understanding the lim-

itations of the system at hand to processing 

and interpreting the acquired spectra—the 

practitioner requires a truly interdisciplin-

ary approach7. Infrared microspectroscopy 

data collection has been slow, and the spatial 

resolution has been poor. In addition, as com-

puter processing capabilities have increased, 

spectral datasets have grown increasingly 

large; thus, developing and implementing 

appropriate computational algorithms capa-

ble of extracting relevant biomarkers is yet 

another cross-discipline hurdle8. As we better 

understand the nature of such derived spectra 

and the underlying physical phenomena that 

may modify their structure, our processing of 

them and as such the information we extract 

from them will undoubtedly evolve9. Within 

this interdisciplinary milieu is the conun-

drum as to why infrared microspectroscopy 

remains so under-exploited in the cell biol-

ogy arena.

The advantage of applying this technology 

in an imaging format is that neither label-

ing nor staining of the sample is required. 

Whereas with other microscopy methods 

one needs a priori knowledge of the sample 

to be interrogated to facilitate the tracking of 

a prescribed biomolecule, unlimited by this 

restriction, infrared microspectroscopy is 

a discovery-based method. However, at the 

same time, the inability to track specific mole-

cules with infrared microspectroscopy means 

that it should be used as a complementary tool 

to optical microscopy, not as a replacement  

for it.

The approach implemented by Hirschmugl, 

Bhargava and co-workers4 that allows spec-

tral imaging at high resolution over a wide 

surface area (a tissue section containing 

several glandular elements) in a short time 

frame (within minutes) may substantially 

increase the application of FTIR microspec-

troscopy in biological research, allowing it 

to provide complementary information to 

that of optical microscopy techniques. They 

achieved this by harnessing multiple syn-

chrotron beams to a focal plane array detec-

tor; the latter is an imaging device consisting 

of an array of light-sensing pixels placed at 

the lens’ focal plane.

for enormous societal benefits. In environ-

mental research, there is an urgent need for 

new approaches to monitor sentinel organ-

ism effects after complex exposures; again, 

computational algorithms can be exploited 

to extract such mechanistic information after 

spectral analyses11.

Galileo used an optical telescope to peer 

into the universe. In the twentieth century, 

astronomers began to use infrared telescopes. 

Likewise, biologists in a multiplicity of differ-

ent disciplines have used optical microscopes 

to understand biological architecture and 

function. Infrared microscopes shine a new 

light into the microverse that is the biologi-

cal cell, allowing one to visualize processes 

differently or to identify novel components 

that may facilitate better explanation or 

understanding. This is not to say that infra-

red microscopy will one day replace optical 

microscopy or other conventional method-

ologies, but it may explain phenomena that 

hitherto would not have been explained using 

traditional approaches. 

The pioneering work by Hirschmugl, 

Bhargava and co-workers4 adds to the impetus 

toward developing benchtop instruments with 

similar capability in the biological laboratory.
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Rohit Bhargava and 
Carol Hirschmugl
Multiple synchrotron beams make infrared 

imaging faster and clearer.

Rohit Bhargava expected that 12 beams from a syn-

chrotron would boost the quality of his imaging data, 

but he still was not prepared for what he saw. Bhargava, 

a bioengineer at the University of Illinois at Urbana-

Champaign, uses a technique called infrared spec-

troscopic  imag-

ing, which detects 

various chemical 

groups in a sample 

based on  the i r 

absorbance of infra-

red light. It is a spe-

cialized technique, 

valued not for its 

ability to produce 

stunning pictures 

but because it can 

yield molecular-

level information 

without the need for labels. Normally, though, that 

means detecting lipids, fats and carbohydrates with a 

resolution of 5 micrometers or worse. Hence Bhargava’s 

surprise at results from the new technique: “You could 

start to see details that you are used to seeing only in 

optical microscopy,” he recalls. “The crispness, the 

details were comparable.” In fact, the pixel size is only 

a half micrometer in diameter, a hundredth the size of 

current state-of-the-art infrared imaging.
“Even to this day, every time we take data, I’m shocked 

by the quality of the images,” says Carol Hirschmugl, a 

physicist at the University of Wisconsin–Milwaukee who, 

with Michael Nasse and others, developed a technique 

that uses multiple synchrotron beams to illuminate sam-

ples with infrared light. Not only is resolution improved, 

the imaging technique is also faster than methods that 

rely on single beams or on heat sources to produce infra-

red radiation. Data that would normally take 11 days to 

collect can now be acquired in 20 minutes.

The idea for the project began when Hirschmugl 

learned about a ‘weekend experiment’ at Brookhaven 

National Laboratories. A team of scientists set four 

beams onto nonbiological samples and showed that 

resolution improved, she says, but they did not take the 

project further to complex biological samples, largely 

because getting access to a beamline is difficult.

Hirschmugl was intrigued, so she approached the scien-

tists at the Synchrotron Radiation Center at the University 

of Wisconsin–Madison, which was built to produce beams 

with considerably less noise than other synchrotrons. The 

director offered access to a bank of 12 beams—provided 

Hirschmugl could get the necessary funding.

When the funding came in, she and the engineers 

got access to the beamline within 2 years (a timeline so 

short Hirschmugl refers to it as “miraculous”). To fig-

ure out how to harness the setup for infrared imaging, 

the team spent weeks, sometimes working “morning 

to morning,” testing algorithms to align the beams and 

focus the 48 mirrors.

Their technique could be used to take great pictures 

of polystyrene beads, but to learn whether the method 

would be useful for biological imaging, Hirschmugl’s 

team had to find a biologist who could ask the right 

kinds of questions. That led her to Bhargava, who had 

worked on some of the earliest prototypes of infrared 

microscopy, including theoretical research on how to 

acquire data to get informative images.

“Out of the blue I got a call from Carol,” Bhargava 

recalls. She said she had an interesting instrument and 

invited him to try it out. “It was very clear from the 

theoretical work that this would be something differ-

ent,” he says, “but I couldn’t have anticipated the nice 

results we would get.” For the first time, the researchers 

could distinguish the collagen-dense interface between 

epithelial and stromal cells using infrared imaging, and 

could distinguish between cancerous and healthy tissue 

in fixed slides of prostate and breast samples.

But that is just the beginning, the collaborators 

say. Any samples that have chemical organization at 

the micrometer scale can be imaged in this facility: 

projects under way include studying stem-cell dif-

ferentiation, malarial parasites inside cells and even 

the pigment and oil layers of 500-year-old paintings. 

Theory-based research can also expand. Work devel-

oped for wide-field imaging with optical techniques 

can be applied to infrared imaging, and experiments 

on the synchrotron may show ways to improve desk-

top infrared imaging instruments.

Hirschmugl plans to invite more collaborators to 

the facility and even to build facilities onsite to enable 

experiments on living cell cultures. That, however, 

may depend on new sources of funding: in the same 

month this paper in Nature Methods was accepted for 

publication, the US National Science Foundation cut 

funds for the Synchrotron Radiation Center. “Now that 

we have these beautiful results, [the National Science 

Foundation] is not funding the running of the syn-

chrotron,” says Hirschmugl. “It’s been an up and down 

time.” But perhaps, she says, it represents a new oppor-

tunity; she and colleagues are looking for funding 

sources to reinvent the Synchrotron Radiation Center 

as a dedicated infrared imaging center.
Monya Baker

Carol Hirschmugl and Rohit Bhargava

Nasse, M.J. et al. High-resolution Fourier-transform  
infrared chemical imaging with multiple synchrotron beams. 
Nat. Methods 8, 413–416 (2011).
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coverage and speed (for example, in stimulated Raman scattering). 

Conversely, the strong mid-infrared absorption contrast makes 

infrared spectroscopy and microscopy a straightforward, non-

destructive, label-free chemical contrast modality with broad 

applications1,3 ranging from the analysis of graphene-based mate-

rials, pharmaceuticals, volcanic rocks and biominerals to applica-

tions in forensics and art conservation, among others. Infrared 

spectroscopic tools are particularly interesting for applications in 

biomedical fields such as marine biology, cancer research, stem 

cells (for example, to delineate cell mechanisms or lineage), real-

time monitoring of live cells, Alzheimer’s disease, Malaria parasites 

and more3 (Online Methods).

Infrared instrumentation, however, has stagnated mostly owing 

to spectral-spatial trade-offs. Commonly, low-brightness thermal 

sources and synchrotron sources are used for Fourier-transform 

infrared (FTIR) microspectroscopy. Synchrotron sources yield 

stable, broadband and high-brightness radiation, making them 

excellent for FTIR microspectroscopy, but the flux of conven-

tional single-beam beamlines is limited by the relatively small 

horizontal collection angle and the resulting comparatively small 

source étendue makes them challenging to use with wide-field 

imaging characterized by a relatively large acceptance or étendue 

(Supplementary Note 1). Here we used multiple synchrotron 

beams with a wide-field detection scheme. This allowed us to 

acquire truly diffraction-limited, high-spatial-resolution infrared 

images of high spectral quality with outstanding speed, consider-

ably extending the potential of infrared microscopy.

For an optical system permitting diffraction-limited imaging, 

spatial resolution is defined as the capacity to separate two adjacent 

(point-like) objects. To achieve the highest (diffraction-limited) 

resolution, an objective with the largest possible numerical aper-

ture (NA) should be used, and the instrument’s signal-to-noise 

ratio (SNR)4,5 should be optimized. Also, it is indispensable to 

match the image pixilation to the NA of the objective using the 

appropriate spatial sampling or pixel size. Too-large pixels inevita-

bly lead to resolution loss, whereas smaller pixels do not improve 

the resolution further. A detailed analysis4 (Online Methods) 

shows that, assuming the largest commercially available NA of 

~0.65, diffraction-limited resolution over the entire mid-infrared 

spectrum can only be achieved with an effective pixel spacing 

not larger than ~ /4 or ~0.6 m for the shortest wavelength of 

interest (  = 2.5 m).

One approach to infrared microscopy uses a single element 

 detector and confocal-like apertures to localize light incident 

on the sample. In this configuration, pixel size is given by the 

raster-scanning step size4. Apertures of dimension a only deliver 

High-resolution Fourier-
transform infrared chemical 
imaging with multiple 
synchrotron beams
Michael J Nasse1,2, Michael J Walsh3, Eric C Mattson1, 
Ruben Reininger4, André Kajdacsy-Balla5,  
Virgilia Macias5, Rohit Bhargava3 & Carol J Hirschmugl1

Conventional Fourier-transform infrared (FTIR) 

microspectroscopic systems are limited by an inevitable 

trade-off between spatial resolution, acquisition time, signal-

to-noise ratio (SNR) and sample coverage. We present an 

FTIR imaging approach that substantially extends current 

capabilities by combining multiple synchrotron beams with 

wide-field detection. This advance allows truly diffraction-

limited high-resolution imaging over the entire mid-infrared 

spectrum with high chemical sensitivity and fast acquisition 

speed while maintaining high-quality SNR.

Stains and labels to enhance contrast in microscopy have been used 

for many years, leading to many important discoveries. However, 

their use is often time-consuming and cumbersome, can perturb 

the function of drugs or small metabolites or may be cytotoxic. 

In contrast, label-free chemical imaging requires no artificial 

modification of biomolecules or additional sample preparation 

and permits a comprehensive characterization of heterogeneous 

materials1. Chemical imaging is generating considerable inter-

est for biomedical analysis as dyes or stains are not required for 

contrast and substantial chemical and structural information can 

be extracted without prior knowledge of molecular epitopes or 

manual interpretation. Vibrational spectroscopic techniques, 

including both mid-infrared absorption and Raman scattering–

based imaging, permit molecular analyses without perturbation. 

Spontaneous Raman scattering relies on a very weak effect and 

therefore involves a trade-off between measurement time and 

sensitivity, potentially leading to photoinduced sample damage. 

Emerging instrumentation2 involving nonlinear Raman contrast 

has considerably extended imaging capabilities beyond these tradi-

tional trade-offs, and exciting work is underway to carefully match 

lasers and reject spurious backgrounds (for example, in coher-

ent anti-Stokes Raman scattering) and in extending wavelength  

1Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA. 2Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, 
Wisconsin, USA. 3Department of Bioengineering, Micro and Nanotechnology Laboratory and Beckman Institute for Advanced Science and Technology, University of 
Illinois at Urbana–Champaign, Urbana, Illinois, USA. 4Scientific Answers and Solutions, Mount Sinai, New York, USA. 5Department of Pathology, University of Illinois at 
Chicago, Chicago, Illinois, USA. Correspondence should be addressed to R.B. (rxb@illinois.edu) or C.J.H. (cjhirsch@uwm.edu).
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 diffraction-limited resolution6 when   a. For  < a, diffraction-

limited resolution6 is not attained, whereas for longer wave-

lengths the throughput decays rapidly. This trade-off between 

resolution and throughput (or SNR) is particularly penalizing 

for infrared microspectroscopy because of the broad band-

width. In practice, reasonable SNR limits the smallest aperture 

for the illumination at the sample plane to ~10 m × 10 m for a 

 thermal source6 and, in a few demonstrations7, down to ~3 m ×  

3 m for synchrotron sources. The small aperture transmissivity  

of only a few percent makes point-by-

point sampling systems very inefficient 

because of the dual need for signal 

 averaging to obtain high SNR and raster-

ing a small pixel size to acquire data, lead-

ing to exceedingly long acquisition times. 

These trade-offs make sequential point 

sampling impractical for micrometer-scale 

 aperture sizes and sub-micrometer-scale 

raster step sizes (necessary for correct 

spatial sampling4) to achieve diffraction-

limited maps. For example, it takes 2–4 h  

to acquire an area of only 30 m × 30 m 

as a fully diffraction-limited map at a 

state-of-the-art third-generation synchro-

tron7 equipped with a conventional con-

focal system. Lengthy collection times, in 

most practical cases, lead experimenters 

to choose larger aperture and step sizes, 

thereby compromising the achievable  

spatial resolution. In contrast, our  

system can cover this area in under a 

minute without compromising the spatial sampling required  

for diffraction-limited resolution.

We based our approach on the more recent strategy of wide-field 

imaging using multichannel focal plane array (FPA) detectors8–10,  

in which no lossy apertures are used. This increases spatial 

 coverage and imaging speed greatly, but the SNR using a thermal 

source limits pixel sizes to ~5 m × 5 m at the sample plane. 

Achieving a pixel size ~100 times smaller to correctly sample the 

diffraction-limited illumination is very ineffective, resulting in a 
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Windows
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Bending magnet
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d
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Figure 1 | FTIR imaging with a multibeam synchrotron source. (a) Schematic of the experimental setup. 

M1–M4 are mirror sets. (b) A full 128 × 128 pixel FPA image with 12 overlapping beams illuminating 

an area of ~50 m × 50 m. Scale bar, 40 m. (c) A visible-light photograph of the 12 beams projected 

on a screen in the beam path (dashed box in a). Scale bar, ~1.5 cm. We display the beams as one beam 

from then on in the schematics. Each beam exhibits a shadow cast by a cooling tube upstream, which 

is not shown in a. (d) Long-exposure photograph showing the combination of the 12 individual beams 

into the beam bundle by mirrors M3 and M4. Scale bar, ~20 cm.
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Figure 2 | Chemical images from various FTIR systems. (a–d) The  

same cancerous prostate tissue section (area, ~280 m × 310 m) 

measured with different instruments, using the integrated absorbance  

of the CH-stretching region (2,800–3,000 cm−1), without dyes or 

stains. We processed all images identically (baseline correction only) 

and used the same color scale (color bar in a; AU, absorbance units). 

Scale bars, 100 m and in insets, 10 m. Images acquired with a 

conventional table-top system (PerkinElmer Spotlight) equipped  

with a thermal source in raster-scanning mode (10 m × 10 m; a)  

and linear array mode (6.25 m × 6.25 m; b), with an FTIR imaging system (Varian Stingray) equipped with a 64 pixel × 64 pixel FPA (5.5 × 5.5 m 

per pixel at the sample plane; c) and with our multibeam synchrotron-based imaging system (pixel size, 0.54 m × 0.54 m; d). (e) Hematoxylin and 

eosin (H&E)-stained prostate tissue (diameter, 0.75 mm). Scale bar, 100 m. Dashed box specifies the corresponding area of a serial, unstained section 

from which we generated images in a–d. (f) Typical unprocessed spectra from a single pixel acquired with each instrument (crosshairs in a–d indicate 

corresponding pixel positions in the infrared images).
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~100-fold lower SNR (Supplementary Fig. 1) and thus in a ~104-

fold longer scanning time8. Hence, to our knowledge there are no 

reports of a true diffraction-limited FTIR imaging system with a 

thermal source.

In 2006 independent groups11–13 pioneered the coupling of 

a synchrotron beam with an FPA detector, which is not obvious 

because wide-field illumination seems incompatible with a small, 

low-emittance synchrotron beam. These groups demonstrated that, 

with a single synchrotron beam, a local region of the FPA can be 

illuminated, and that this region yielded increased SNR compared to 

 thermal sources. This inhomogeneous illumination, however, means 

that either a relatively small FPA (and thus sample area) must be 

used or that the acquisition time must be increased to compensate 

the inhomogeneous illumination. This coverage-SNR trade-off has 

hampered the use of synchrotron-based technology: only one recent 

publication14 uses a single synchrotron beam with an FPA.

Here we present an infrared imaging system specifically 

designed and optimized to overcome these limitations by coupling 

multiple low-emittance synchrotron beams with a large FPA 

 detector. We extracted a large fan of radiation from a dedicated 

bending magnet, split it into 12 beams and subsequently rear-

ranged these into a 3 × 4 matrix beam bundle to illuminate a 

large field of view in the sample plane (Fig. 1). We engineered the 

matrix to achieve homogeneous illumination over areas of up to 

52 m × 52 m (96 pixels × 96 pixels; Fig. 1b and Supplementary 

Fig. 2) with each pixel corresponding to 0.54 m × 0.54 m at 

the sample plane. This pixel size, ~100 times smaller than con-

ventional thermal or synchrotron systems, is smaller than the 

maximum pixel size allowed for correct spatial sampling (over-

sampling) so that diffraction-limited images even at the smallest 

wavelength of interest (2.5 m) are possible (Online Methods). 

Although we designed this system explicitly for acquisition in 

transmission mode, it also yields equivalent quality images in 

reflection mode (Supplementary Figs. 3 and 4).

To test this approach, we compared data from the same pros-

tate tissue using various state-of-the-art infrared imaging systems 
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Figure 3 | High-resolution multibeam 

synchrotron FTIR imaging. (a) Hematoxylin 

and eosin (H&E)-stained image of cancerous 

prostate tissue with chronic inflammation 

obtained using visible light microscopy. 

(b,c) Multibeam synchrotron absorbance 

images obtained from an unstained serial 

section of the sample shown in a. Spatial 

detail in images from the new system 

is highlighted for lymphocytes (blue 

arrow) and red blood cells (red arrow). 

(d) Image of the same unstained section 

imaged with a conventional table-top 

system (PerkinElmer Spotlight, linear array 

mode). (e) Expanded views of the boxed 

area in b showing the typical appearance 

of lymphocytes in H&E stained samples 

(top), the new system (bottom left) and a 

conventional table-top instrument (bottom 

right). (f) H&E-stained visible light image 

(top), asymmetric CH-stretching (2,840 

cm−1, center) and collagen-specific (1,245 

cm−1, bottom) infrared images of an 

unstained section of normal breast tissue 

(terminal ductal lobular unit region). Epithelial (green arrow) and intralobular stromal regions (magenta arrow) are highlighted. (g) Spectra of epithelial 

and stromal cells recorded with a multibeam synchrotron versus a thermal source. (h) Absorbance image (2,840 cm−1; top) of an unstained cancerous 

prostate tissue showing two benign prostate glands. Inset, potential presence of basement membrane at the interface between stroma and epithelium 

is marked (arrows). Image (bottom) showing epithelial (green) and stromal (magenta) cells classified using previous algorithms. (i) Average spectra 

from epithelial, stromal (two each: one closer to the interface, one farther away), and interface pixels identified manually from data obtained using two 

different instruments. AU, absorbance units. Scale bars, 50 m.
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(Fig. 2 and Supplementary Fig. 1). None of the other instru-

ments provided diffraction-limited resolution at all wavelengths 

(Fig. 2a–c). Raster-scanning the area shown in Figure 2a–d 

(~280 m × 310 m) at diffraction-limited resolution using a 

synchrotron-based dual-aperture microscope would require over 

11 d. In contrast, using our technique we recorded the same area 

(Fig. 2d) in ~30 min (16 scans). The spectral quality was essen-

tially identical (Fig. 2f) to that of the best commercial systems, 

despite the ~100-fold pixel area reduction. This pixel size pro-

vided the additional spatial detail (Fig. 2) necessary for infrared 

imaging to become competitive with optical microscopy in bio-

medical applications. In another example, wide-field multibeam 

synchrotron imaging revealed lymphocytes (diameter, ~2–7 m) 

and other tissue features that were clearly visible in hematoxylin 

and eosin–stained images (the clinical gold standard for diagno-

sis; Fig. 3a–c). The same visualizations were impossible using 

conventional table-top infrared systems (Fig. 3d,e). The contrast 

in these images can be used to color-code images into constituent 

cell types15; hence the capability of our technique opens up the 

possibility of subcellular classification.

Furthermore, pixel localization also improved spectral purity of 

data extracted from images. The hematoxylin and eosin contrast 

was well-reproduced with our technique using simple absorption 

features, and epithelial and stromal regions were clearly delineated 

without staining (Fig. 3f). The additional detail in synchrotron 

wide-field images allowed relatively limited cross-contamination 

of spectra from both intralobular stromal and epithelial regions. 

Although we expected these characteristic spectra to be different, 

the limited pixel size of the thermal source systems demonstrated 

substantial overlap, but the multibeam synchrotron system pro-

vided distinct spectra (Fig. 3g). Using our technique, we also clas-

sified an infrared image of prostate tissue into constituent cell types 

(Fig. 3h). Although it is well-known that the basement membrane 

lies at the interface of epithelial and stromal cells and is critical in 

diagnosing lethal cancer, the basement membrane is not discern-

able in images from thermal systems. We classified infrared tis-

sue images into cell types15, and identified the interface between 

the epithelial and stromal cells (Fig. 3h). Thermal source spectra 

from these regions were an average of epithelial and stromal pixels, 

whereas interface spectra extracted from the synchrotron image 

were distinct from both contributions (Fig. 3i), which, with the 

higher collagen triplet absorption, was suggestive of the basement 

membrane. Additional investigations are in progress.

To validate the optical capability of our system, we recorded 

images of a 1951 US Air Force test target5 (Supplementary  

Figs. 3a,b and 4). We used line profiles5 (Supplementary Fig. 3e–h)  

to determine the contrast for each pattern, quantitatively con-

firming that our system reached and exceeded (Supplementary 

Note 2) the Rayleigh resolution criterion and delivered diffrac-

tion-limited images over the entire mid-infrared bandwidth. 

Furthermore, spatial oversampling at all wavelengths and high 

SNR, as offered by our system, are a prerequisite12,13 for devel-

oping computational resolution enhancement techniques. We 

implemented a spatial deconvolution algorithm (Supplementary 

Note 3) based on (wavelength-dependent) measured point-spread 

functions (Supplementary Figs. 5 and 6). The increased con-

trast and resolution of the deconvolved US Air Force target sam-

ple images were apparent in the line profiles (Supplementary 

Fig. 3c–h). Furthermore, measurements of ~1 m polystyrene 

beads confirmed that our system reached a spectral limit of detec-

tion of 6  1 fmol (mass, 600  100 fg; and volume, 0.6  0.1 fl) 

in a single 0.54 m × 0.54 m pixel (Supplementary Fig. 7). We 

estimated that this limit is about two orders of magnitude finer 

than that of present instrumentation16.

The use of multiple synchrotron beams enabled us to achieve a 

homogeneously high SNR over a large FPA area, which improved 

sample coverage and acquisition speed compared to conventional 

thermal or synchrotron-based systems and enabled high diffraction-

limited spatial resolution over the entire mid-infrared spectrum. The 

improvement in acquisition time opens the way to real-time nonin-

vasive and label-free live-cell imaging. We hope that our technique 

spurs the community to develop appropriate optical designs for table-

top instruments and provides a rationale for laser-based systems and 

other multibeam synchrotron-based imaging beamlines.

METHODS

Methods and any associated references are available in the online 

version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Requirements for diffraction-limited resolution. Mid-infrared 

spectroscopy and microscopy has very broad applications in many 

scientific fields, ranging from fundamental and applied research 

to engineering and biology15–29. Infrared microspectroscopy in 

particular can contribute to the biomedical sciences because of 

its noninvasive spatially resolved chemical specificity. Here we 

describe the requirements to obtain diffraction-limited spatial 

resolution with a mid-infrared microscope.

Spatial resolution can be quantified, for example, by the 

Rayleigh5 criterion as d = 0.61  / NA, in which d is the mini-

mum distance between two adjacent (point-like) objects that 

are just resolved (the factor 0.61 is strictly valid only for lenses 

without obscuration and smaller for Schwarzschild optics; see 

Supplementary Note 2). But achievable spatial resolution is not 

only dependent on the wavelength and the NA of the objective 

via the Rayleigh criterion but also on the pixel size, that is, the 

objective’s magnification and the SNR of the imaging system4. To 

observe diffraction-limited performance, a spatial sampling of at 

least ~8 pixels4 per Airy pattern is required to achieve sufficient 

contrast. Smaller pixel sizes (oversampling) do not improve the 

resolution, which is then limited by diffraction, whereas larger 

pixels unavoidably deteriorate contrast and thus resolution 

(undersampling). For the smallest wavelength (2.5 m) using an 

NA of 0.65, we need a pixel size not larger than 1.22 × 2.5 m /  

0.65 / 8 = 0.59 m. Even the less restrictive Nyquist theorem yields 

a maximum pixel size of 1 / (2.3 fcutoff) = 0.84 m (usually 2.3 is 

used instead of the theoretical 2 suggested by Nyquist to account 

for factors such as noise in real optical systems30), where fcutoff = 

2 NA /  is the spatial cutoff frequency, equivalent to the Sparrow 

frequency5,31. In summary, this means that the NA of an objec-

tive alone is not enough to provide the resolution promised by 

the Rayleigh criterion, but its magnification also has to match. 

In the case of an objective with an NA of 0.65 (approximately the 

largest commercially available NA, giving the best possible spatial 

resolution), it needs at least a magnification of 40 m / 0.59 m = 

68 (assuming a typical FPA pixel size of 40 m × 40 m). We used 

a 74× objective (NA = 0.65) in our setup, leading to a pixel size of 

0.54 m × 0.54 m (slight oversampling). In addition this high 

spatial sampling offers the advantage that subdiffraction objects 

can be localized (but of course, not resolved) with an accuracy 

better than the diffraction limit32.

Instrument design. Synchrotron storage rings are excellent 

light sources for aperture-based infrared microspectroscopy33 

as the small horizontal and vertical emittance (source étendue) 

of conventional single-beam beamlines and the relatively small 

acceptance (detector system étendue) of the microscopy system 

can be closely matched (Supplementary Table 1). Increasing the 

photon flux by extracting a larger horizontal angle from a bend-

ing magnet, however, is not beneficial because the additional 

photons cannot be coupled efficiently to the small acceptance 

of such microscopy systems. For wide-field microscopes with-

out throughput-restricting apertures, in contrast, single beams 

from conventional beamlines have limited flux owing to their 

relatively small emittance, making it challenging to match the 

relatively large acceptance of a multichannel FPA imaging instru-

ment. The instrument described here substantially increased the 

horizontal collection angle to match the large acceptance of a 

wide-field imaging system to fully exploit the source brightness. 

It is located at the Synchrotron Radiation Center in Stoughton, 

Wisconsin, USA, which already houses a conventional aperture-

based infrared microscope. This synchrotron facility encourages 

scientists to apply for peer-reviewed access to beamtime and/or 

initiate a collaboration with the authors of this work. Applications 

are accepted for review every six months and rapid requests for 

initial experiments are handled more frequently (http://www.src.

wisc.edu/users/new_users.html).

We extracted 320 mrad × 27 mrad of infrared radiation from 

a dedicated bending magnet and split this fan of radiation into 

twelve beams with a set of twelve toroidal mirrors (M1; Fig. 1), 

which refocused each beam (magnification of 1). Each beam 

exited an ultrahigh vacuum chamber via one of twelve flat mirrors 

(M2; Fig. 1) through one of twelve ZnSe windows (Fig. 1) into a 

nitrogen-purged area. Next, twelve parabolic mirrors (M3; Fig. 1) 

collimated the beams, followed by twelve stacked small flat mir-

rors (M4; Fig. 1) that rearranged the beams into a 3 × 4 matrix. We 

used a subsequent piezo-driven optical feedback system (feedback 

system is not shown) to stabilize the beam bundle, reduce vibration 

effects and increase the SNR. Next, we sent the bundle through a 

Vertex 70 (Bruker) spectrometer (Fig. 1), which was coupled to 

a Hyperion 3000 (Bruker) infrared and visible light microscope. 

There, the slightly defocused beam bundle illuminated the sample 

area through a 15× or 20× Schwarzschild condenser (Fig. 1) to 

spread out each beam so that the beams overlap spatially to pro-

vide quasi-homogeneous illumination at the sample. Finally, a 74× 

objective (Ealing) imaged the sample onto a 128 pixel × 128 pixel 

FPA (Santa Barbara Focalplane), so that each pixel had an effec-

tive geometrical area at the sample plane of 0.54 m × 0.54 m  

(Fig. 1). Additional design details of the imaging system have 

been reported elsewhere34. In contrast to other implementations 

of thermal or synchrotron sources, our multibeam system allowed 

us to simultaneously uniformly illuminate an order of magnitude 

more pixels (96 pixels × 96 pixels; Fig. 1b) and used an objective 

with a substantially higher NA of 0.65 with a correctly matched4 

pixel size (0.54 m × 0.54 m) to maintain full high diffraction-

limited resolution over the mid-infrared spectrum at a high SNR. 

We used a condenser with an NA of ~0.6 to match the NA of 

the objective. Owing to its higher NA, this objective delivered 

38% and 23% higher spatial resolution (according to the Rayleigh 

criterion) compared to previous studies (for example, the 15× 

objective with NA = 0.4 and pixel size = 2.7 m × 2.7 m or 36× 

objective with NA = 0.5 and pixel size = 1.1 m × 1.1 m)11,14. 

Furthermore, owing to the multibeam design, a high synchrotron 

storage ring current was not mandatory to obtain high SNR. The 

~270 mA current of our storage ring was sufficient to achieve 

similar SNR (Fig. 2d,f) leading to shorter acquisition times com-

pared to those reported in previous publications14. The present 

design can cover more than double the sample area in equivalent 

or shorter times with better spatial resolution as compared to 

single synchrotron beam systems.

Synchrotron sources may have coherent properties, for example, 

synchrotrons with pulse lengths shorter than tens of femtoseconds 

in the far infrared. The present source, however, had nanosecond 

pulses, and we designed the path lengths for the twelve beams to 

never temporally overlap on the sample or detector plane. Hence, 

temporal coherence did not have an impact on the imaging qual-

ity of the images produced by the microscope. Experimentally we 
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observed no spectral evidence of spatial or temporal coherence 

effects, nor any impact on image quality or resolution, as can be 

seen, for example, by the correspondence between the thermal 

and synchrotron spectral data.

Experimental details, data processing, and samples. We con-

ducted conventional thermal source-based imaging on two 

commercial systems: Stingray (Varian; Fig. 2c) using an FPA 

detector and Spotlight 400 (PerkinElmer; Figs. 2a,b and 3d,e 

and Supplementary Fig. 1a) equipped with a single element  

and a 16-pixel linear array detector. We acquired the synchro-

tron point-by-point scanning image (Supplementary Fig. 1b) 

on a Continu m (Thermo Nicolet) dual-aperture microscope 

connected to beamline 031, and we collected the remaining 

images with the multibeam synchrotron system connected to 

a Hyperion 3000 (Bruker) microscope at beamline 021, both 

at the Synchrotron Radiation Center. The Varian, PerkinElmer 

and Thermo Nicolet measurements used a Happ-Genzel, the 

Bruker measurements a Norton-Beer (medium) apodization. 

We baseline-corrected the images in Figures 2 and 3 (including 

spectra), Supplementary Figures 1 and 7; all other infrared 

images as well as spectra show raw data. We did not use post-

 acquisition smoothing or filtering. The infrared data were ana-

lyzed and images were created with software packages IRidys 

(in-house development) and ENVI (ITT VIS).

The prostate cancer sample (Gleason grade 6) with epithelial 

cells (Fig. 2 and Supplementary Fig. 1) was a viable tumor with-

out necrosis, in a cribriforming pattern and had some strands 

of stroma crossing through it. A second prostate cancer sam-

ple, which was also Gleason grade 6 for comparison (Fig. 3a–e), 

had chronic inflammation (mostly mononuclear cell infiltration 

of macrophages and lymphocytes) and contained two glands, a 

small vessel with a muscular wall and capillaries (with blood). The  

tissue shown in Figure 3f was a normal human breast tissue core 

including the terminal ductal lobular unit (TDLU) region and 

the tissue shown in Figure 3h contained two benign prostate 

glands from a cancerous prostate tissue core (Gleason grade 6). 

Tissues used here were from anonymized samples from individu-

als and involved secondary analysis as approved by the University 

of Illinois at Urbana-Champaign Institutional Review Board, 

protocol 06684. We fixed all biomedical samples in 4% para-

formaldehyde, embedded them in paraffin, sectioned them at a 

thickness of 4 m, mounted them on a BaF2 infrared transparent 

window and deparaffinized them with hexane for 48 h before 

measurement. In transmission mode sample thickness can affect 

the obtainable spatial resolution. Using a simple geometric model 

we estimated that the sample thickness should not be above ~3–4 

m to achieve full diffraction-limited resolution.

We purchased the apertures (Supplementary Figs. 5 and 6) 

from National Aperture, Inc., the high-resolution US Air Force 

(USAF) test target (Supplementary Fig. 3) from Edmund Optics 

Inc. and the polystyrene beads (Supplementary Fig. 7) from 

Polysciences, Inc. We diluted the polystyrene bead suspension 

with water, dispensed it on an ultrathin formvar film substrate 

and then air-dried it.

We recorded images of polystyrene beads with a diameter of ~1 

and 2 m (acquisition time, ~5 min) to examine spectral limits 

of detection per pixel. We detected the 6  1 fmol or 3.4 × 109  

(  0.7 × 109; s.d.) CH2 groups contained in a 1 m polystyrene 

bead (mass, 600  100 fg; volume, 0.6  0.1 fl) in a single 0.54 m 

× 0.54 m pixel using the International Union of Pure and Applied 

Chemistry (IUPAC) detection limit criterion (Supplementary 

Fig. 7). We estimated this to be ~100-fold better than with current 

instrumentation16 and this compared favorably with the lowest 

detection limit reported35 using destructive methods.
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Abstract. In experimental sciences, diversity tends to difficult predic-
tive models’ proper generalization across data provided by different lab-
oratories. Thus, training on a data set produced by one lab and testing
on data provided by another lab usually results in low classification ac-
curacy. Despite the fact that the same protocols were followed, variabil-
ity on measurements can introduce unforeseen variations that affect the
quality of the model. This paper proposes a Genetic Programming based
approach, where a transformation of the data from the second lab is
evolved driven by classifier performance. A real-world problem, prostate
cancer diagnosis, is presented as an example where the proposed ap-
proach was capable of repairing the fracture between the data of two
different laboratories.

1 Introduction

The assumption that a properly trained classifier will be able to predict the
behavior of unseen data from the same problem is at the core of any automatic
classification process. However, this hypothesis tends to prove unreliable when
dealing with biological data (or other experimental sciences), especially when
such data is provided by more than one laboratory, even if they are following
the same protocols to obtain it.

This paper presents an example of such a case, a prostate cancer diagnosis
problem where a classifier built using the data of the first laboratory performs

J. Bacardit et al. (Eds.): IWLCS 2008/2009, LNAI 6471, pp. 185–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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very accurately on the test data from that same laboratory, but comparatively
poorly on the data from the second one. It is assumed that this behavior is due to
a fracture between the data of the two laboratories, and a Genetic Programming
(GP) method is developed to homogenize the data in subsequent subsets. We
consider this method a form of feature extraction because the new dataset is
constructed with new features which are functional mappings of the old ones.

The method presented in this paper attempts to optimize a transformation
over the data from the second laboratory, in terms of classifier performance.
That is, the data from the second lab is transformed into a new dataset where
the classifier, trained on the data from the first lab, performs as accurately as
possible. If the performance achieved by the classifier in this new, transformed,
dataset, is equivalent to the one obtained in the data from the first lab, we
understand the data has been homogenized.

More formally, the classifier f is trained on data from one laboratory (dataset
A), such that y = f(xA) is the class prediction for one instance xA of dataset
A. For the data from the other lab (dataset B), it is assumed that there exists
a transformation T such that f(T (xB)) is a good classifier for instances xB
of dataset B. The ’goodness’ of the classifier is measured by the loss function
l(f(T (xB)), y), where y is the class associated with xB, and l(., .) is a measure
of distance between f(T (xB)) and y. The aim is to find a transformation T such
that the average loss over all instances in B is minimized.

The remainder of this paper is organized as follows: In Section 2, some prelimi-
naries about the techniques used and some approaches to similar problems in the
literature are presented. Section 3 has a description of the proposed algorithm.
Section 4 details the real-world biological dataset that motivates this paper. Sec-
tion 5 includes the experimental setup, along with the results obtained, and an
analysis. Finally, some concluding remarks are made in Section 6.

2 Preliminaries

This section is divided in the following way: In Section 2.1 we introduce the
notation that has been used in this paper. Then we include a brief summary of
what has been done in feature extraction in Section 2.2, and a short review of
the different approaches we found in the specialized literature on the use of GP
for feature extraction in Section 2.3.

2.1 Notation

When describing the problem, datasets A, B and S correspond to:

– A: The original dataset, provided by the first lab, that was used to build the
classifier.

– B: The problem dataset, from the second lab. The classifier is not accurate
on this dataset, and that is what the proposed algorithm attempts to solve.

– S: The solution dataset, result of applying the evolved transformation to the
samples in dataset B. The goal is to have the classifier performance be as
high as possible on this dataset.
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2.2 Feature Extraction

Feature extraction is one form of pre-processing, which creates new features as
functional mappings of the old ones. An early proposer of such a term was proba-
bly Wyse in 1980 [1], in a paper about intrinsic dimensionality estimation. There
are multiple techniques that have been applied to feature extraction throughout
the years, ranging from principal component analysis (PCA) to support vector
machines (SVMs) to GAs (see [2,3,4], respectively, for some examples).

Among the foundations papers in the literature, Liu’s book in 1998 [5] is one
of the earlier compilations of the field. A workshop held in 2003 [6], led Guyon
& Elisseeff to publish a book with an important treatment of the foundations of
feature extraction[7].

2.3 Genetic Programming-Based Feature Extraction

Genetic Programming (GP) has been used extensively to optimize feature ex-
traction and selection tasks. One of the first contributions in this line was the
work published by Tackett in 1993 [8], who applied GP to feature discovery and
image discrimination tasks.

We can consider two main branches in the philosophy of GP-based feature
extraction:

1 On one hand, we have the proposals that focus only on the feature extraction
procedure, of which there are multiple examples: Sherrah et al. [9] presented
in 1997 the evolutionary pre-processor (EPrep), which searches for an op-
timal feature extractor by minimizing the misclassification error over three
randomly selected classifiers. Kotani et al.’s work from 1999 [10] determined
the optimal polynomial combinations of raw features to pass to a k-nearest
neighbor classifier. In 2001, Bot [11] evolved transformed features, one-at-a-
time, again for a k-NN classifier, utilizing each new feature only if it improved
the overall classification performance. Zhang & Rockett, in 2006, [12] used
multiobjective GP to learn optimal feature extraction in order to fold the
high-dimensional pattern vector to a one-dimensional decision space where
the classification would be trivial. Lastly, also in 2006, Guo & Nandi [13] op-
timized a modified Fisher discriminant using GP, and then Zhang & Rockett
[14] extended their work by using a multiobjective approach to prevent tree
bloat.

2 On the other hand, some authors have chosen to evolve a full classifier with
an embedded feature extraction step. As an example, Harris [15] proposed in
1997 a co-evolutionary strategy involving the simultaneous evolution of the
feature extraction procedure along with a classifier. More recently, Smith &
Bull [16] developed a hybrid feature construction and selection method using
GP together with a GA.

2.4 Finding and Repairing Fractures between Data

Among the proposals to quantify the fracture in the data, we would like to
mention the one by Wang et al. [17], where the authors present the idea of
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correspondence tracing. They propose an algorithm for the discovering of changes
of classification characteristics, which is based on the comparison between two
rule-based classifiers, one built from each dataset. Yang et al. [18] presented in
2008 the idea of conceptual equivalence as a method for contrast mining, which
consists of the discovery of discrepancies between datasets. Lately, it is important
to mention the work by Cieslak and Chawla [19], which presents a statistical
framework to analyze changes in data distribution resulting in fractures between
the data.

The fundamental difference between the mentioned works and this one is we
focus on repairing the fracture by modifying the data, using a general method
that works with any kind of data fracture, while they propose methods to quan-
tify said fracture that work provided some conditions.

3 A Proposal for GP-Based Feature Extraction to
Homogenize Data from Two Laboratories

The problem we are attempting to solve is the design of a method that can create
a transformation from a dataset (dataset B) where a classification model built
using the data from a different dataset (dataset A) is not accurate; into a new
dataset (dataset S) where the classifier is more accurate. Said classifier is kept
unchanged throughout the process.

We decided to use GP to solve the problem for a number of reasons:

1 It is well suited to evolve arbitrary expressions because its chromosomes are
trees. This is useful in our case because we want to have the maximum possi-
ble flexibility in terms of the functional expressions of this transformations.

2 GP provides highly-interpretable solutions. This is an advantage because our
goal is not only to have a new dataset where the classifier works, but also to
analyze what was the problem in the first dataset.

Once GP was chosen, we needed to decide what terminals and operators to use,
how to calculate the fitness of an individual and which evolutionary parameters
(population size, number of generations, selection and mutation rates, etc) are
appropriate for the problem at hand.

3.1 Solutions Representation: Context-Free Grammar

The representation of the solutions was achieved by extending GP to evolve
more than one tree per solution. Each individual is composed by n trees, where
n is the number of attributes present in the dataset. We are trying to develop a
new dataset with the same number of attributes as the old one, since this new
dataset needs to be fed to the existing model. In the tree structure, the leaves
are either constants (we use the Ephemeral Random Constant approach [20]) or
attributes from the original dataset. The intermediate nodes are functions from
the function set, which is specific to each problem.
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The attributes on the transformed dataset are represented by algebraic expres-
sions. These expressions are generated according to the rules of a context-free
grammar which allows the absence of some of the functions or terminals. The
grammar corresponding to the example problem would look like this:

Start → Tree T ree

T ree → Node

Node → Node Operator Node

Node → Terminal

Operator → + | − | ∗ | ÷
Terminal → x0 | x1 | E

E → realNumber(represented by e)

3.2 Fitness Evaluation

The fitness evaluation procedure is probably the most treated aspect of design
in the literature when dealing with GP-based feature extraction. As has been
stated before, the idea is to have the provided classifier’s performance drive
the evolution. To achieve that, our method calculates fitness as the classifier’s
accuracy over the dataset obtained by applying the transformations encoded in
the individual (training-set accuracy).

3.3 Genetic Operators

This section details the choices made for selection, crossover and mutation op-
erators. Since the objective of this work is not to squeeze the maximum possible
performance from GP, but rather to show that it is an appropriate technique for
the problem and that it can indeed solve it, we did not pay special attention to
these choices, and picked the most common ones in the specialized literature.

– Tournament selection without replacement. To perform this selection, s in-
dividuals are first randomly picked from the population (where s is the tour-
nament size), while avoiding using any member of the population more than
once. The selected individual is then chosen as the one with the best fitness
among those picked in the first stage.

– One-point crossover: A subtree from one of the parents is substituted by one
from the other parent. This procedure is carried over in the following way:

1 Randomly select a non-root non-leave node on each of the two parents.
2 The first child is the result of swapping the subtree below the selected

node in the father for that of the mother.
3 The second child is the result of swapping the subtree below the selected

node in the mother for that of the father.
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– Swap mutation: This is a conservative mutation operator, that helps diversify
the search within a close neighborhood of a given solution. It consists of
exchanging the primitive associated to a node by one that has the same
number of arguments.

– Replacement mutation: This is a more aggressive mutation operator that
leads to diversification in a larger neighborhood. The procedure to perform
this mutation is the following:

1 Randomly select a non-root non-leave node on the tree to mutate.
2 Create a random tree of depth no more than a fixed maximum depth.

In this work, the maximum depth allowed was 5.
3 Swap the subtree below the selected node for the randomly generated

one.

3.4 Function Set

Which functions to include in the function set are usually dependent on the
problem. Since one of our goals is to have an algorithm as universal and ro-
bust as possible, where the user does not need to fine-tune any parameters to
achieve good performance; we decided not to study the effect of different function
set choices. We chose the default functions most authors use in the literature:
{+,−, ∗,÷, exp, cos}.
3.5 Parameters

Table 1 summarizes the parameters used for the experiments.

Table 1. Evolutionary parameters for a nv-dimensional problem

Parameter Value

Number of trees nv

Population size 400 ∗ nv

Duration of the run 100 generations

Selection operator Tournament without replacement

Tournament size log2(nv) + 1

Crossover operator One-point crossover

Crossover probability 0.9

Mutation operator Replacement & Swap mutations

Replacement mutation probability 0.001

Swap mutation probability 0.01

Maximum depth of the swapped in subtree 5

Function set {+,−, ∗,÷, cos, exp}
Terminal set {x0,x1,...,xnv − 1, e}

3.6 Execution Flow

Algorithm 1 contains a summary of the execution flow of the GP procedure,
which follows a classical evolutionary scheme. It stops after a user-defined num-
ber of generations,
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Algorithm 1. Execution flow of the GP method

1 . Randomly c r e a t e the i n i t i a l populat ion by apply ing the
context−f r e e grammar in Sec t ion 3 . 1 .

2 . Repeat Ng times ( where Ng i s the number o f g en e r a t i on s )
2 .1 Evaluate the cur ren t populat ion , us ing the procedure

seen in Sec t ion 3 . 2 .
2 .2 Apply s e l e c t i o n and c r o s s ov e r to c r e a t e a new

populat ion that w i l l r ep l a c e the old one .
2 .3 Apply the mutation operator s to the new popu lat ion .

3 . Return the best i nd i v idua l ever seen .

4 Case Study: Prostate Cancer Diagnosis

Prostate cancer is the most common non-skin malignancy in the western world.
The American Cancer Society estimated 192,280 new cases and 27,360 deaths
related to prostate cancer in 2009 [21]. Recognizing the public health implications
of this disease, men are actively screened through digital rectal examinations
and/or serum prostate specific antigen (PSA) level testing. If these screening
tests are suspicious, prostate tissue is extracted, or biopsied, from the patient
and examined for structural alterations. Due to imperfect screening technologies
and repeated examinations, it is estimated that more than one million people
undergo biopsies in the US alone.

4.1 Diagnostic Procedure

Biopsy, followed by manual examination under a microscope is the primary
means to definitively diagnose prostate cancer as well as most internal cancers
in the human body. Pathologists are trained to recognize patterns of disease in
the architecture of tissue, local structural morphology and alterations in cell size
and shape. Specific patterns of specific cell types distinguish cancerous and non-
cancerous tissues. Hence, the primary task of the pathologist examining tissue
for cancer is to locate foci of the cell of interest and examine them for alterations
indicative of disease. A detailed explanation of the procedure is beyond the scope
of this paper and can be found elsewhere [22,23,24,25].

Operator fatigue is well-documented and guidelines limit the workload and
rate of examination of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist variation complicates de-
cision making. For this reason, it would be extremely interesting to have an
accurate automatic classifier to help reduce the load on the pathologists. This
was partially achieved in [24], but some issues remain open.

4.2 The Generalization Problem

Llorà et al. [24] successfully applied a genetics-based approach to the develop-
ment of a classifier that obtained human-competitive results based on FTIR
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data. However, the classifier built from the data obtained from one laboratory
proved remarkably inaccurate when applied to classify data from a different
hospital. Since all the experimental procedure was identical; using the same ma-
chine, measuring and post-processing; and having the exact same lab protocols,
both for tissue extraction and staining; there was no factor that could explain
this discrepancy.

What we attempt to do with this work is develop an algorithm that can
evolve a transformation over the data from the second laboratory, creating a new
dataset where the classifier built from the first lab is as accurate as possible.

4.3 Pre-processing of the Data

The biological data obtained from the laboratories has an enormous size (in the
range of 14GB of storage per sample); and parallel computing was needed to
achieve better-than-human results. For this reason, feature selection was per-
formed on the dataset obtained by FTIR. It was done by applying an evalu-
ation of pairwise error and incremental increase in classification accuracy for
every class, resulting in a subset of 93 attributes. This reduced dataset provided
enough information for classifier performance to be rather satisfactory: a sim-
ple C4.5 classifier achieved ∼ 95% accuracy on the data from the first lab, but
only ∼ 80% on the second one. The dataset consists of 789 samples from one
laboratory and 665 from the other one. These samples represent 0.01% of the
total data available for each data set, which were selected applying stratified
sampling without replacement. A detailed description of the data pre-processing
procedure can be found in [22].

The experiments reported in this paper were performed utilizing the reduced
dataset, since the associated computational costs make it unfeasible to work
with the complete one. The reduced dataset is made of 93 real attributes, and
there are two classes (positive and negative diagnosis). The dataset consists of
789 samples from one laboratory and 665 from the other one, with a 60%− 40%
class distribution.

5 Experimental Study

This section is organized in the following way: To begin with, a general de-
scription of the experimental procedure is presented in Section 5.1, and the
parameters used for the experiment. The results obtained are presented in Sec-
tion 5.2, a statistical analysis is shown in Section 5.3, and lastly some sample
transformations are shown in Section 5.4.

5.1 Experimental Framework

The experimental methodology can be summarized as follows:

1 Consider each of the provided datasets (one from each lab) to be datasets A
and B respectively.
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2 From dataset A, build a classifier. We chose C4.5 [26], but any other classifier
would work exactly the same; due to the fact that the proposed method uses
the learned classifier as a black box.

3 Apply our method to dataset B in order to evolve a transformation that will
create a solution dataset S. Use 5-fold cross validation over dataset S, so
that training and test set accuracy results can be obtained.

4 Check the performance of the step 2 classifier on dataset S. Ideally, it should
be close to the one on dataset A, meaning the proposed method has success-
fully discovered the hidden transformation and inverted it.

5.2 Performance Results

This section presents the results for the Prostate Cancer problem, in terms of
classifier accuracy. The results obtained can be seen in table 2.

Table 2. Classifier performance results

Classifier performance in dataset ...
A-training A-test B S-training S-test

0.95435 0.92015 0.83570 0.95191 0.92866

The performance results are promising. First and foremost, the proposed
method was able to find a transformation over the data from the second labora-
tory that made the classifier work just as well as it did on the data from the first
lab, effectively finding the fracture in the data (that is, the difference in data
distribution between the data sets provided by the two labs) that prevented the
classifier from working accurately.

5.3 Statistical Analysis

To complete the experimental study, we performed a statistical comparison
between the classifier performance over datasets A, B and S.

In [27,28,29,30] a set of simple, safe and robust non-parametric tests for statis-
tical comparisons of classifiers are recommended. One of them is the Wilcoxon
Signed-Ranks Test [31,32], which is the test that we have selected to do the
comparison.

In order to perform the Wilcoxon test, we used the results from each parti-
tion in the 5-fold cross validation procedure. We ran the experiment four times,
resulting in 4 ∗ 5 = 20 performance samples to carry out the statistical test. R+

corresponds to the first algorithm in the comparison winning, R− to the second
one.

We can conclude our method has proved to be capable of fully homogenizing
the data from both laboratories regarding classifier performance, both in terms
of training and test set.
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Table 3. Wilcoxon signed-ranks test results

Comparison R+ R− p-value null hypothesis of equality

A-test vs B 210 0 1.91E − 007 rejected (A-test outperforms B)

B vs S-test 0 210 1.91E − 007 rejected (S-test outperforms B)

A-training vs S-training 126 84 −− accepted

A-test vs S-test 84 126 −− accepted

5.4 Obtained Transformations

Figure 1 contains a sample of some of the evolved expressions for the best indi-
vidual found by our method. Since the dataset has 93 attributes, the individual
was composed of 93 trees, but for space concerns only the attributes relevant to
the C4.5 classifier were included here.

� �

Fig. 1. Tree representation of the expressions contained in a solution to the Prostate
Cancer problem

6 Concluding Remarks

We have presented a new algorithm that approaches a common problem in real
life for which not many solutions have been proposed in evolutionary computing.
The problem in question is the repairing of fractures between data by adjusting
the data itself, not the classifiers built from it.
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We have developed a solution to the problem by means of a GP-based al-
gorithm that performs feature extraction on the problem dataset driven by the
accuracy of the previously built classifier.

We have applied our method to a real-world problem where data from two dif-
ferent laboratories regarding prostate cancer diagnosis was provided, and where
the classifier learned from one did not perform well enough on the other. Our
algorithm was capable of learning a transformation over the second dataset that
made the classifier fit just as well as it did on the first one. The validation results
with 5-fold cross validation also support the idea that the algorithm is obtaining
good results; and has a strong generalization power.

We have applied a statistical analysis methodology that supports the claim
that the classifier performance obtained on the solution dataset significantly
outperforms the one obtained on the problem dataset.

Lastly, we have shown the learned transformations. Unfortunately, we have
not been able to extract any useful information from them yet.
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ABSTRACT  
 
Glandular tumors arising in epithelial cells comprise the majority of solid human cancers. 
Glands are supported by stroma, which is activated in the proximity of a tumor. Activated 
stroma is often characterized by the molecular expression of �-smooth muscle actin (SMA) 
within fibroblasts. The precise spatial and temporal evolution of chemical changes in 
fibroblasts upon epithelial tumor signaling, however, is poorly understood. Here we report a 
label-free method to characterize fibroblast changes using Fourier transform infrared (FT-IR) 
spectroscopic imaging by comparing spectra to �-SMA expression in primary normal human 
fibroblasts. The fibroblast activation process was recorded by spectroscopic imaging using 
increasingly tissue-like conditions – (a) simulation using the growth factor TGF�1, (b) co-
culture with MCF-7 human breast cancerous epithelial cells in Transwell co-culture and, (c) 
with MCF-7 in three-dimensional cell culture. Spectral signatures of stromal transformation 
were finally compared to normal and malignant human breast tissue biopsies. Results 
indicate that temporally complex spectral changes are observed, providing a richer 
assessment than simple molecular imaging based on �-SMA expression. Some changes are 
conserved across culture conditions and in human tissue, providing a label-free method to 
monitor stromal transformations.  
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INTRODUCTION

The stroma is known to play a crucial role in epithelial cancer progression in a variety of 
tissues (1-4). The stroma has also been suggested as an alternative and potentially more 
effective therapeutic target because the vast heterogeneity in the genomic and histological 
makeup of epithelial tumors makes individualized treatment expensive and unreliable (5). 
Methods to characterize the stroma, hence, and its transformations in epithelial tumor 
progression are imperative. One hallmark of a cancer-associated stroma, for example, is the 
fibroblast-to-myofibroblast cellular transformation (6). This phenotypic change is 
characterized by the expression of �-smooth muscle actin (�-SMA), a cytoplasmic protein 
that increases the cell’s contractility and leads to the stiffening of the tumor 
microenvironment (7). The fibroblast-to-myofibroblast transformation has been observed 
within tumor-adjacent stroma in human tissues (8-10). A similar response can be induced by 
exposing fibroblasts to elevated levels of transforming growth factor-�1 (TGF-�1) in cell 
culture (11). Because of the readily-observable transition and its effect on physical properties 
of the tissue, stromal myofibroblasts have been a focus of research and are important markers 
in glandular cancers such as breast cancer (10,11). Immunohistochemistry (IHC) is the gold 
standard for visualizing �-SMA expression in clinical samples but using antibody-based 
techniques is time-consuming, costly and quantifying protein expression is difficult (12). The 
stromal response, further, is likely more complex than characterized by this single marker. 
Though advances in immunofluorescence have made considerable progress (13), only a few 
known proteins can simultaneously be detected. Even this capability may not be sufficient to 
catalogue the varied cytopathic effects of a multifactorial disease like cancer. Alternative 
techniques to directly measure cellular transformations in a consistent, quantitative and 
multiplexed manner are needed.  
 
As an alternative to molecular imaging, label-free chemical imaging approaches have 
recently provided reliable correlations between histopathologic status and spectral markers 
(14-16). Fourier transform infrared (FT-IR) spectroscopic imaging, in particular, has been 
used extensively to study biochemical changes within cells as well as differences between 
cell lines (17-19). Molecular expression in simple breast cell cultures, too, has been 
correlated to spectral properties in both IR (20) and Raman spectroscopy (21). These studies 
have focused on epithelial cells. The fibroblast response to epithelial transformations has not 
been studied in vitro using spectroscopic imaging techniques. Here, we describe a method for 
characterizing and analyzing the fibroblast to myofibroblast differentiation. We specifically 
seek to examine the correlation between the current gold standard antibody marker and the 
spectroscopic signature of transformation. We examine transformation in primary normal 
dermal fibroblasts activated with TGF�1, in co-cultures of primary fibroblasts with 
tumorigenic breast epithelial cells (MCF-7) and human tissues. While co-culture models 
provide a tissue-like environment, TGF�1 activation is used as a positive control because it is 
commonly used in research (7). This comprehensive examination of cells grown in two-
dimensional (2D) and three-dimensional (3D) cell cultures as well as human breast tissue 
will ensure wide research and clinical relevance. Finally, the presence of other cell types is a 
potentially confounding analytical factor and it is not obvious that spectral correlations will 
hold for mixtures of cell types. Hence, this study is important from the perspective of clinical 
cancer progression, for research in correlating labeled and label-free approaches as well as in 
the analysis of samples that present a complex bioanalytical background.  
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METHODS
 
Experimental Design 

Cell Culture Models 
To observe the effects of cancerous breast epithelium on the surrounding tissue stroma, two 
co-culture methods were utilized. First, the Transwell co-culture (Figure 1A) allows for two 
cell types to communicate via soluble growth factors that diffuse into a shared medium (22). 
Second, a 3D cellular co-culture model (Figure 1B) was developed. The 3D model consists 
of cells embedded in a type I collagen hydrogel. While both the systems are essentially 
mediated by soluble growth factors, cells adhere to a solid substrate in the 2D model and 
have a different geometry and physical microenvironment. While 2D monolayer cultures are 
the staple of cell biology, 3D cultures have recently been shown to be a more realistic 
representation of biological phenomena that occur in tissue (23-28). Hence, an analysis of 
both systems using our approach serves to ensure that the developed method is robust and 
relevant to different communities of researchers. In addition to these co-cultures, we sought 
to demonstrate that the developed methods are also valid for 2D and 3D cultures of single 
cell types. Therefore, we stimulated single cell type cultures with TGF�1 to validate the 
observed activation. 
 
For 2D cultures, primary normal human dermal fibroblasts (NDF) were grown on MirrIR 
slides, which allowed for both FT-IR transflectance and immunofluorescence imaging. The 
fibroblasts were co-cultured with cancerous breast epithelial cells, MCF-7, or stimulated with 
TGF�1. MCF-7 cells were derived from a human breast tumor that had metastasized to the 
lung, but maintain a cancer stem cell-like phenotype in culture (29). They are less aggressive 
when injected into nude mice compared with other human breast cancer cell lines and, hence, 
were used in this study as a model of an ‘early’ cancerous source. Samples were removed 
from the culture at specific time points (0h, 6h, 12h, 24h) and fixed. Half the number of 
samples were analyzed using immunofluorescence to detect �-SMA. The other half were 
spectroscopically imaged. For 3D cultures, samples were prepared as separate layers, with 
one cell type (NDF, MCF-7) per layer in a type I collagen matrix. The layers are co-cultured 
for a determined length of time, and then separated with forceps. There was no observed cell 
migration within the time intervals of this experiment, determined by cell type specific 
expression of cytokeratins for epithelial cells and vimentin for fibroblasts (Data not shown). 
Briefly, the layers were separated, stained using standard IHC methods, and subsequently 
imaged using a Zeiss Axiovert 200M. A similar 3D model has been demonstrated previously 
to study skin cancer (29). While the experimental methods of both this study and the 
engineered skin model are capable of studying epithelial-fibroblast interactions, the pre-
defined geometry here allows observations of molecular changes without morphology-
associated effects or changing molecular concentration of a growing tumor that may 
confound the temporal profile. 
 
Cell Culture
Cell lines and Use. Normal adult primary dermal fibroblasts (NHDF, Lonza, #CC-2511) 
were maintained in Fibroblast Basal Medium supplemented with 0.1% hFGF-B, 0.1% 
Insulin, 0.1% gentamicin/amphotericin-B, and 2% fetal bovine serum (FBS) (FGM-2 
Fibroblast Growth Medium-2 Bullet Kit, Lonza, #CC3132). They were used at passage 8-10 



�

�

to avoid problems associated with senescence in primary cell lines. The fibroblasts were 
subcultured according to protocols detailed on the Lonza website, and their ReagentPack 
(Trypsin/EDTA, Trypsin Neutralizing Solution, HEPES Buffered Saline Solution, #CC-
5034) was used exclusively with this cell type. For serum-free medium, the media was 
prepared the same manner, except that FBS was omitted. MCF-7 (ATCC) cells were 
maintained in Dulbecco’s Modified Eagle’s Essential Medium (Invitrogen) supplemented 
with 10% FBS (Sigma) and 1% PenStrep (Sigma). They were subcultured according to 
ATCC protocols every 3 days at 70% confluency. 
 
2D cell culture.  Fibroblasts were grown on sterilized MirrIR slides (Kevley Technologies, 
Chesterland, Ohio, USA). They were seeded at approximately 60% confluency and grown 
for 24 hours before being switched to serum-free medium (FGM-2, Lonza, with additives but 
not FBS). The samples were grown in serum-free medium for 24 hours before co-culture. 
MCF-7 were grown on transwell inserts (Corning, 0.1�m pore size) in normal growth 
medium for 24 hours and then switched to serum-free medium for an additional 24 hours 
before co-culture. 

Transwell co-culture. The Transwell co-culture system is useful for spectroscopy, because 
any IR substrate can be used in the lower chamber of the culture dish (Transwell inserts, 0.1 
�m pore, PES, Corning Incorporated, Corning, NY, USA). Here, pieces of MirrIR Low-E 
slides were sterilized once with 10% bleach followed by 70% ethanol and left to dry in a 
sterile biosafety cabinet before use. Immunofluorescence staining was also performed using 
the MirrIR slides, and there were no detrimental effects on the coated glass surface. Using 
the MirrIR slides for both immunofluorescence and FT-IR measurements ensured that there 
was no substrate-specific factor that could have induced �-SMA expression independent of 
soluble growth factors. After 0h, 6h, 12h, and 24h of co-culture, each MirrIR slide was rinsed 
with sterile 1X PBS before fixation in 4% paraformaldehyde for 1 hour at 4�C. After fixation, 
paraformaldehyde was neutralized with 0.1 M glycine for 10 minutes. Subsequently, the 
samples were divided: for each time point, two samples were prepared for FT-IR imaging 
and two were prepared for immunofluorescence staining. The samples for FT-IR imaging 
were rinsed with de-ionized water and left to dry prior to imaging.  
 
3D cell culture.  Cells were maintained as previously described in two-dimensional culture 
before being suspended in collagen hydrogels (Type I derived from rat tail, BD Biosciences). 
All reagents were kept on ice before plating because collagen solution will gel slightly at 
room temperature. In a conical tube on ice, collagen stock solution was diluted to 2 mg/mL 
with sterile 10X PBS. Cells were trypsinized, centrifuged at 1000 rpm for 3 minutes, and 
resuspended in growth medium. After counting, cells were suspended in the collagen solution 
at a cell density of 420 cells/mL for NDF and 1.9x104 cells/mL MCF-7. A much lower cell 
density of fibroblasts was used compared with epithelial cells because of the tendency of 
fibroblasts to collapse the hydrogel at high cell density and after activation and the similarity 
to fibroblast density in real tissue. Finally, 1N NaOH was added at 0.023 mL per 1 mL of 
collagen stock solution to neutralize the acetic acid and allow the collagen to gel. To prepare 
samples, 200 �L of collagen and cell suspension was added to each well of a 48-well tissue 
culture plate. The plates were left at 4�C for 90 minutes to slow down the polymerization of 
collagen to provide a more uniform fiber orientation and width (31). The samples were then 
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placed in a humidified incubator at 37�C for 30 minutes to polymerize the collagen with cells 
embedded within. After the samples had gelled, growth medium was added. The cells were 
allowed to grow for 24 hours before being changed to serum-free medium to avoid any 
confounding effects of growth factors present in FBS. After 48 hours in serum-free medium, 
the co-culture layers were stacked together and 1.5 ng/mL TGF�1 (Transforming Growth 
Factor-�1 from human platelets, � 97%, Sigma, #T1654) in serum-free medium was added to 
the appropriate fibroblast samples as a positive control. Fresh serum-free medium was added 
to the co-cultured samples. After 0, 6, 12, and 24 hours of co-culture, the fibroblast layer was 
fixed in 4% paraformaldehyde overnight before processing for immunofluorescence or FT-IR 
imaging.

Three-dimensional culture sample preparation. 3D culture samples were paraffin embedded 
and sectioned prior to imaging. First, the paraformaldehyde was gently aspirated from the 
samples and then the gels were dehydrated by serial ethanol dehydration. The samples were 
put in 50%, 70%, 80%, and 95% ethanol for 45 minutes each followed by three 45 minute 
incubations in 100% ethanol. The samples were then soaked in xylenes for three 45 minute 
periods. Finally, the samples were placed in paraffin in a 60�C oven for two 1 hour periods 
and one 12 hour period. The samples were mounted in paraffin blocks and sectioned at 5 �m 
onto MirrIR slides for FT-IR imaging. Samples were de-paraffinized in hexanes for 24 hours 
before imaging. For each set of experiments, samples were prepared in duplicate and the 
experiment was replicated independently to show reproducibility of both biological results 
and absorbance spectra. 

Immunofluorescence Staining. For immunofluorescence staining, samples were 
permeabilized in 0.2% TX-100 for 15 minutes. After washing three times with PBS the 
samples were blocked with a 1wt% BSA in PBS/T for 1.5 hours. After three washes with 
PBS/T, the samples were incubated with primary antibody (Mouse anti-human �-SMA, 
Dako, 1:100 dilution) overnight at 4�C. The samples were washed again and incubated with 
secondary antibody (Goat anti-Mouse IgG-FITC conjugated, abcam, 1:80 dilution) for one 
hour. The samples were mounted with UltraCruz Mounting Medium for Fluorescence with 
DAPI (Santa Cruz Biotechnology, Cat # sc-24941) and imaged using a Zeiss Axiovert 200M 
fluorescence microscope. For three-dimensional samples, confocal imaging was done using a 
Leica SP2 laser scanning confocal microscope. 

Immunohistochemistry: Tissue Biopsies. A tissue microarray (TMA) of 96 1.5mm human 
breast tissue cores comprising of normal, epithelial hyperplasia, in-situ, benign tumors and 
malignant cancer tissues was obtained (US Biomax, Inc. USA. #BR961). Four serial sections 
were acquired from the TMA block, one 5μm thick tissue section was placed on a BaF2 
substrate for FT-IR analyses and three 5μm thick tissues sections were placed on standard 
glass slides for IHC and hematoxylin and eosin (H&E) staining. IHC staining was performed 
for vimentin and �-SMA. H&E staining was used for tissue visualization. Staining was 
performed using a Ventana Benchmark XT Automated Slide Preparation system (Ventana 
Medical Systems, Inc.) and Ventana clinical protocols and reagents (XT UltraView DAB 
protocol, Ventana, Tucson, AZ).  

FT-IR spectroscopic imaging. FT-IR spectroscopic imaging data were recorded using a 
Perkin Elmer Spotlight 400 imaging system. For all cellular samples, both confluent and 
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sparse regions of the sample were imaged in a transflection mode and data from 4000 cm-1 to 
750 cm-1 were saved. A spectral resolution of 8 cm-1 was set with 32 scans per pixel averaged 
to provide higher signal to noise ratio data. An interferometer speed of 1.0 cm/s was used 
while a pixel size of 6.25 x 6.25 μm was used for detection using a MCT linear array. A 
spectral background was collected on the MirrIR slide using the same parameters but with 
120 scans per pixel. Atmospheric correction was performed on the Spotlight instrument, and 
the files were exported into ENVI-IDL. Images were baseline corrected and only those pixels 
with an absorbance greater than 0.015 a.u. for the peak absorbance at 1656 cm-1 (Amide I) 
were used for further analysis. Spectra were normalized to Amide I to account for variances 
in cell density.

For tissue microarray data, absorbance was stronger and we sought to maintain compatibility 
with earlier studies on the parameters used. Sample data were collected using the same 
scanning parameters as for cell culture samples, except a 4 cm-1 resolution with 2 scans per 
pixel and a mirror speed of 2.2 cm/s were used. A background was acquired at these 
parameters with 120 scans averaged. A threshold absorbance of 0.03 a.u. for the 1656 cm-1 
(Amide I) absorbance peak was employed to determine pixels to be included in the analysis. 
Regions of Interest (ROIs) were manually marked on the absorbance images corresponding 
to regions of either fibroblast or myofibroblast cells. Cell-type assignations were made based 
on the IHC staining of the serial tissue sections; fibroblasts stained positive for vimentin and 
negative for �-SMA, and myofibroblasts stained positive for both vimentin and �-SMA. Over 
40,000 pixels corresponding to fibroblasts and over 150,000 pixels corresponding to 
myofibroblasts were identified. From these identified pixels, average spectra were obtained 
for fibroblast and myofibroblast classes. 

RESULTS AND DISCUSSION 
 
The well-characterized fibroblast activation pathway serves as a model system to benchmark 
spectral (chemical) changes that accompany the phenotypic transformation. The transwell co-
culture system was used first to determine whether co-culturing normal primary fibroblasts 
with tumorigenic breast epithelial cells could result in an activated phenotype, as shown 
previously in fibroblasts isolated from stroma surrounding a tumor in vivo (7) as well as after 
induction by TGF�1 in vitro (9). In our co-culture with MCF-7 cells, phenotypic changes 
were induced in the primary dermal fibroblasts within 6 hours to the same extent as treatment 
with 1.5 ng/mL TGF�1 (Figure 2). The experiment was repeated for both cases over a time 
course of 24 hours, with timepoints being taken at 0 (no co-culture), 6, 12, and 24 hours to 
observe any potential evolution of this marker over time. From immunofluorescence imaging 
results, there was no visible change in the number of cells expressing �-SMA expression over 
time. No digitally-assisted methods were used in order to compare intensity levels as 
quantitative intensity analysis is difficult due to non-specific fluorescence and 
photobleaching. Both stimulation with TGF�1 and co-culture with MCF-7 activated 
fibroblasts within 6 hours.  
 
We hypothesized that examining the temporal evolution of IR absorption spectra would yield 
more information about fibroblast activation than the “on-off” information derived from 
immunofluorescence expression of a single biomarker. Spectra measured from fibroblasts are 
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shown in Figure 3. Changes were primarily seen in the biomolecular fingerprint region 
(1800-950 cm-1) and also in the C-H stretching region (3000-2875 cm-1). In the fingerprint 
region, larger changes were seen in peaks at 1080 cm-1 and 1224 cm-1 (Figure 3, top). These 
are the asymmetric and symmetric vibrational modes of the phosphate bond, indicative of 
changes in nucleic acids. There is an increase in the 1080 cm-1 peak, which is usually 
associated with the symmetric phosphate stretching of DNA. These spectra are averaged to 
cell density, and the cells were serum-starved before the experiment began, and so there 
should have been little cellular proliferation over the 24 hour time course. Serum-starving the 
cells prior to co-culture arrests them at G0/G1, and this should minimize spectral differences 
in 1080 cm-1 that can be attributed to cells being in different phases of the cell cycle (32-34). 
The increase at 1080 cm-1 indicates that unless there is an increased amount of DNA present 
in the cells, this assignment of this peak to the phosphate bond of DNA alone may be 
uncertain. If we account for the total amount of genetic material present within the cell 
(RNA, DNA, and associated proteins), this could provide some explanations for the increases 
in absorbance at this peak. The spectral changes seen could be due to an increase in RNA, 
changes in chromatin three-dimensional configuration, chromatin sequestration, or an 
increase in the size of the nucleus. Recently reported by Whelton et al, changes in the 1080 
cm-1 peak are attributed to a transition between native B- and A-like forms of DNA upon 
dehydration of intact cells. We do not anticipate that changes seen in these experiments are 
due to this transition because all samples were fixed and dried completely prior to 
spectroscopic imaging (35).  
 
Between the two treatments (MCF-7 co-culture and TGF�1 stimulation), there was similar 
molecular expression of �-SMA, but differences in absorption at 1080 cm-1. In the TGF�1 
stimulated samples, the 6- and 12- hour samples had an increase in absorption at 1080 cm-1 
compared with the control, but after 24 hours the level had fallen back to the control value. 
Interestingly, at 1224 cm-1, the 6- and 24-hour time points were elevated while the 12-hour 
sample had lower absorption than the control. This discrepancy could be the result of the 
cells only being stimulated with TGF�1 once at the beginning of the experiment. Thus, the 6 
hour sample would have a sustained level of TGF�1 in the medium before the cells were 
fixed, whereas in the 24 hour sample the concentration of TGF�1 present in the medium has 
decreased because it has already been metabolized by the cells. However, in the samples that 
were co-cultured with MCF-7 cells, there was a uniform level of growth factors secreted by 
the epithelial cells into the shared medium throughout the time course of the experiment. 
Therefore, we believe that the absorbance at 1224 cm-1 may be used as a marker for a 
sustained fibroblast response to molecular signals released by a malignant epithelium.  
 
In the C-H stretching region, changes were seen in peaks at 2850 cm-1, 2930 cm-1, and 2960 
cm-1. This region of the spectrum is correlated with proteins and also the carbonyl chains of 
fatty acids (31). With increasing lengths of time after TGF�1 stimulation, there was a gradual 
increase in peak height across all peaks in this region (Figure 3B, bottom). In contrast, co-
culture with MCF-7 cells yielded a fibroblast response that was more defined, with a very 
rapid increase in peak height at 2930 cm-1 after just 6 hours in comparison with the control 
(Figure 3A, bottom). Although immunofluorescence results show �-SMA expression in 
samples stimulated with TGF�1 or co-cultured with MCF-7 cells, there were differences in 
absorption spectra between the two sets of samples, permitting a more in-depth biochemical 
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analysis of cellular activation. The reasons for the difference in kinetics of activation likely 
stem from the co-culture providing a host of molecules in the activation pathway via 
paracrine signaling. While the mechanisms of the two activations are likely different, this 
would not be apparent from a single marker. It is also interesting to contrast the ability of 
spectroscopy to measure transient behavior, which is lacking in the expression of 
-SMA. 
Vibrational spectroscopy, of course, does not provide specific protein expression levels in 
cells. As a general strategy for comprehensive biomolecular analysis, hence, the 
spectroscopic data can be used to inform the search for appropriate molecular markers by 
providing the temporal evolution profiles. Further, there may be cellular and sub-cellular 
spectral heterogeneity across the sample upon stimulation. These have been examined 
elsewhere (36). 
 
In contrast to the 2D transwell co-culture, culturing cells in a 3D geometry provides an 
environment that is closer to cellular chemistries in vivo. Cells are known to express surface 
receptors more faithfully in three-dimensional culture and are also more likely to differentiate 
in response to external stimuli (37-39). In the 3D co-culture system described here, a single 
cell type and collagen scaffold was used fabricate a cylindrical-shaped “layer” (Figure 1B). 
Layers containing different cell types were prepared separately and subsequently stacked on 
top of each other. This technique allowed for cells to be co-cultured by simple stacking. 
Since the layers are only weakly adherent, they could subsequently be mechanically re-
separated for analysis. As previously used in 2D cell culture, immunofluorescence staining 
for �-SMA was used to probe for the presence of myofibroblasts in 3D using confocal 
microscopy (Figure 2C). The immunofluorescence results remained consistent with the 
transwell co-culture results; exposure to MCF-7 cells activated fibroblasts along the same 
time course as TGF�1 exposure. Another use for three-dimensional cell culture in this setup 
is that the collagen peaks (1283 cm-1, 1236 cm-1, and 1204 cm-1) can be used for IR spectral 
analysis—either as control or for examination of microenvironmental changes associated 
with a growing tumor. These collagen peaks are diagnostically useful when looking at whole 
tissue sections (15), and there is evidence showing that changes in collagen spectra can be 
detected within a certain distance from a tumor (30,40), which is clinically relevant for 
cancer pathology. Hence, we examined the same in the 3D co-culture model (Figure 4A).  
 
The only major observation in our study was an overall increase in the absorption of the 
collagen peaks after co-culture with MCF-7 cells over time. This could be a result of 
fibroblasts locally depositing collagen upon exposure to MCF-7 stimuli. Myofibroblasts play 
an important role in tissue maintenance, providing a wound healing-type response by 
depositing more collagen in the surrounding extracellular matrix (41). TGF�1 also stimulates 
fibroblasts to deposit collagen via the Smad pathway, which aids in the transcription of the 
�2(I) procollagen gene, COL1A2 (42). It is suggested that the fibroblasts present in collagen-
dense keloid scars are more susceptible to TGF�1 (43). Further, the extracellular matrix can 
act as a control mechanism for the involvement of TGF�1 in collagen biosynthesis (44). The 
other possibility is that upon fibroblast activation, the stiffening of the cells themselves 
results in the contraction of the surrounding gel, making local regions appear more collagen-
dense in the absorption spectra. However, no detectable gel contraction was observed upon 
visual inspection during the timecourse of this experiment, likely due to the low cell density 
of fibroblasts embedded within the collagen matrix. For these reasons, we believe that 



�

�

spectral changes seen in this model are indicative of collagen remodeling by cancer-activated 
fibroblasts. 
 
Consistent with the 2D culture results, changes were seen in the 1080 cm-1 peak in the 3D 
culture model. There was an increase in this peak initially, however after 24 hours this peak 
has diminished. The ‘ebb and flow’ of this nucleic acid signature, even in the environment of 
persistent epithelial cues, suggests that fibroblasts’ molecular expressions settle into a new 
equilibrium upon an initial exposure to transforming stimuli. This observation is also 
consistent with changes seen in the Transwell co-culture (Figure 3, bottom). There is no 
change in RNA levels (1224 cm-1) seen in this model compared with the Transwell-culture 
model. This could be a result of diminished cytoplasmic material to record data from as cells 
appear smaller in the 3D matrix and thus the cytoplasm is much smaller compared to the 
nucleus of the cells. Peaks in the C-H stretch region, as with other cultures, may correlate 
with changes in the phospholipid membrane or protein synthesis after fibroblast activation. 
Either explanation is plausible considering the physiologic changes that occur during the 
fibroblast to myofibroblast phenotypic change. However, in the 12- and 24- hour time points, 
there is a significant decrease in absorption in this region compared with the control. In 
general, absorbance in this area was low compared with samples cultured in monolayers due 
to cells in 3D cultures being sparsely populated and of thinner shape than 2D cultures. Thus, 
their accurate monitoring is much more challenging than 2D monolayers. In the C-H 
stretching region, biochemical changes are dominated by events occurring in the cytoplasm 
of cells (36) as were the changes at 1224 cm-1. In the 3D culture, as with tissues, it is 
productive to examine changes due to cellular secretion of growth factors in the surrounding 
extracellular matrix. Examining changes within the cells themselves requires a subcellular 
localization of signals that is not achieved here.  
 
To translate the understanding from these studies, clinical breast tissue samples were 
examined by IR imaging and immunohistochemical staining, including for vimentin and �-
SMA. Vimentin (Figure 5B) will stain for fibroblasts and other mesoderm-derived tissues. In 
contrast, �-SMA (Figure 5C) is a protein found in myofibroblasts, myoepithelium that lines 
each gland, and smooth muscle cells which surround blood vessels. Hence, we were able to 
differentiate between normal and activated fibroblasts by comparing the localization of these 
two markers in adjacent sections of tissue. In the clinical breast tissue samples, vimentin (in 
brown) is primarily seen in the stroma between glands (Figure 5B).  However, only 
fibroblasts nearest the cancerous epithelium express �-SMA (Figure 5C). This is a cancer-
associated signature and is diagnostically relevant. In order to provide a critical comparator 
to the work performed in our monolayer and three-dimensional co-culture models, we 
examined spectral differences between activated and resting-state fibroblasts in these clinical 
samples. IR spectroscopic imaging was performed on an entire TMA. Based on the staining 
of adjacent sections, pixels were manually marked and classified as ‘fibroblast’ or 
‘myofibroblast’. The pixels for each class were averaged and these average spectra across the 
TMA were examined, as shown in Figure 6. Spectra were compared with the 3D results, 
because this model should be biologically closest to clinical samples. However, upon 
examination, the results between the two models are inconsistent. Although the collagen 
peaks (1300-1050 cm-1) and C-H stretching region (3000–2800 cm-1), are consistent in shape 
between the three-dimensional culture model and the tissue sample, myofibroblasts from the 
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clinical samples show lower absorbance in the biomolecular fingerprint region (Figure 6A). 
Spectra from the 3D cultures were ‘pure’, consisting only of normal or activated fibroblasts 
and type I collagen. Using clinical samples is invaluable, but leads to more variables that 
become increasingly difficult to control. For example, there is a large degree of variance 
between patients, even for the noncancerous biopsies (unpublished data, M.J. Walsh). 
Another interesting avenue is whether immuhistochemical stains, used here as the gold 
standard for comparison, are truly as reliable in clinical samples as in cell culture studies. 
 
Across the three systems described in this manuscript, activated fibroblasts display spectral 
changes in the mid-IR regions associated with nucleic acids (1080 cm-1, 1224 cm-1) and C-H 
stretching modes (2850 cm-1, 2930 cm-1, 2960 cm-1). Although 2D and 3D co-culture models 
were mostly consistent, we found some discrepancies between the in vitro and the clinical 
specimens. Studying this transition with FT-IR spectroscopy under controlled cell culture 
conditions yields important information about the potential kinetics of paracrine signaling 
between epithelial cells and fibroblasts. Investigating the C-H stretching region of fibroblasts 
also results in overall increased absorbance at all three peaks across all scenarios, including 
human breast tissue biopsies (Figure 6B). The nature of fibroblast activation involves a 
cellular phenotypic change, where cytoplasmic proteins are produced, and the shape of the 
cell undergoes a transformation. These biological phenomena can be correlated with the 
increased absorbance in peaks associated with C-H stretching as a marker for a cancer-
activated stromal profile. Because FT-IR spectroscopic imaging can be used to study the 
distribution of chemical changes across the area of a sample, this understanding can be 
applied to detect early stromal activation in noncancerous areas of a biopsy or tissue 
resection independent of the expression of a biomarker. This same technique could be 
expanded to different biological problems, such as testing the effects of drug delivery on 
distal tissues. By correlating these biological phenomena observed in cell culture with 
chemical signatures, label-free imaging in complex human tissues becomes elucidated.  
 
FT-IR spectroscopy and imaging have been employed to measure a wide variety of 
biomolecular species, including nucleic acids, collagen, glycogen, proteins, and fatty acids. 
The complex mixtures of these molecules present in cells and tissues implies that IR 
spectroscopy is useful for determining global biochemical changes in classes of these 
materials and is sensitive to the metabolic (45) and local physiologic state of the tissue. In 
this study, we demonstrate that the method extracts more detailed changes compared to 
conventional immunofluorescence. The correlations of these changes with mechanistic 
molecular transitions in the cell can now be established. This next step will link many events 
in the transformation a simple, label-free measurement. Since IR imaging data are a 
convolution of the underlying spectral and structural properties of the tissue (46) and the 
imaging setup (47-49) and optical properties (50-52), measurement of specific molecular 
alterations becomes very challenging. Nevertheless, we show that there is conservation of 
some changes in the fibroblast-to-myofibroblast transformation that translates across 
monolayer culture, three-dimensional culture, and human tissues. In summary, IR absorption 
imaging provides a label-free approach for integrated, first-pass approaches that can yield 
information about changes in the sample. Such information can provide a basis for studies by 
itself or an early indication of which biological assays to perform next and is especially 
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critical for heterogeneous samples in which we need to determine where to perform further 
molecular analysis.  
 
 
CONCLUSIONS 

Normal adult human fibroblasts were examined in monolayer and three-dimensional cell 
cultures as well as formalin-fixed and paraffin embedded human tissue to correlate the 
expression of �-SMA using immunofluorescence techniques to chemical changes, as 
observed using FT-IR spectroscopic imaging. Spectral changes were observed predominantly 
in the C-H stretching region (3290 cm-1) and phosphate bonds associated with nucleic acids 
(1224 cm-1 and 1080 cm-1). In 3D co-cultures and human tissue biopsies, the 
microenvironmental changes were assessed by examining vibrational modes commonly 
associated with collagen (1283 cm-1, 1236 cm-1, and 1204 cm-1). Fibroblasts activated in vitro 
via TGF�1 stimulation or co-culture with breast cancer epithelial cells expressed �-SMA and 
were spectrally distinct from resting-state fibroblast controls. This was also true in the tissue 
biopsies. However, the spectra from cellular cultures were not entirely consistent with those 
from tissue, particularly in the phosphate peaks. Although the overall spectral characteristics 
are conserved between the 3D culture and biopsies, specific absorbance values were 
inconsistent. Furthermore, there is a spatial dependence of this expression based on the 
distance of the fibroblasts from the tumor ‘source’, determined by analysis of the collagen 
peaks and expression of �-SMA in tissue. By directly extracting spectral signatures of 
fibroblast activation, analysis can potentially provide new information, be conducted in a 
high-throughput manner and reduce variability, time, and costs. Finally, this work exhibits a 
novel use of IR spectroscopic imaging in examining stromal changes associated with tumor 
progression.  
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Figure Legends 
 
Figure 1. (A) Schematic of the trans-well co-culture system that allows the cells to 
communicate via soluble growth factors without contact. A filter with a 0.2 �m pore size is 
used at the bottom of the top basket. (B) Schematic of the three-dimensional (3D) co-culture 
setup, which is comprised of cells embedded in a type I collagen gel. No membrane separates 
the layers.  

Figure 2. After six hours (6h) of stimulation with 1.5 ng/mL TGF�1 (A) or 6h co-culture 
with MCF-7 cells (B), �-SMA is expressed in dermal fibroblasts. Confocal microscopy (C) 
was used to visualize �-SMA expression in fibroblasts for 3D systems. Scale bar represents 
50 �m. 

Figure 3. Top In fibroblasts co-cultured with MCF-7 (A), or after 1.5 ng/mL TGF�1 
stimulation (B), normal dermal fibroblasts exhibit changes primarily in the asymmetric and 
symmetric phosphate stretching bands, indicating bulk changes in the quantity of nucleic 
acids over time, normalized to 1656 cm-1 (Amide I). Fibroblasts activated through co-culture 
show sustained levels of nucleic acids over time, whereas levels wane in TGF�1 activated 
fibroblasts. 

Bottom Comparison of the C-H-stretching region for fibroblasts co-cultured with MCF-7 
cells (A) and TGF�1 stimulated fibroblasts (B). Peaks in the C-H stretching region of the 
spectrum (2960 cm-1, 2932 cm-1, and 2850 cm-1) have a much higher absorbance in the 12- 
and 24- hour timepoints compared with control. This suggests an increase in cell metabolism 
through the presence of higher amounts of fatty acids. After 6 hours of TGF�1 stimulation, 
fibroblasts show lower absorbance in this region compared with control and MCF-7 co-
culture.  

Figure 4. Characteristic absorbance peaks associated with collagen (1283 cm-1, 1236 cm-1, 
and 1204 cm-1) are visible and elevated in fibroblasts after co-culture with MCF-7 (A). At 
1080 cm-1 in both three-dimensional and two-dimensional culture (Figure 3B) the same 
cyclical phenomenon is shown. The C-H stretching region of the spectrum (B) is distinct 
from that of the transwell co-culture (Figure 4B) spectra. 

Figure 5. Cancerous breast tissue biopsies demonstrate glandular and stromal regions to 
examine �-SMA expression proximal to cancerous epithelium. The morphological features 
are distinguished using hematoxylin and eosin staining (A). Fibroblasts are discerned by 
using IHC staining for vimentin (B). IHC staining for �-SMA (C) is positive for activated 
fibroblasts (myofibroblasts), myoepithelium (found lining the gland), and smooth muscle 
(found around blood vessels). �-SMA positive fibroblasts are located adjacent to the 
cancerous epithelium, but distal fibroblasts are negative for this protein. Each tissue core, 
part of a tissue microarray (TMA), is 0.5 mm in diameter. 

Figure 6. Pixels on a TMA were classified into fibroblast or myofibroblasts based on their 
average spectra as shown here. Overall normalized absorption was higher for the fibroblast 
class compared with myofibroblasts (A). However, in the C-H stretching region (B), 
myofibroblasts show stronger absorption compared with fibroblasts in the three peaks noted.  
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